
Software Virtualization
Based Rootkits

BING SUN
taoshaixiaoyao@hotmail.com

Popular “Virtual Execution”
Techniques

Pure Emulator: Bochs

OS/API Emulator: Wine

Virtual Machine: VMware, Plex86

Full Virtualization vs. Para-Virtualization

Full Virtualization�Virtualize all features of processor
and hardware. Typical representatives include IBM VM/370,
VMware.

Para-Virtualization�May make reasonable
assumptions and do some modifications on the Guest OS.
Typical representatives include Xen, Denali.

The Classification Of Virtual
Machine Monitor

Type I VMM

The Classification Of Virtual
Machine Monitor

Type II VMM

Hardware Virtualization Support

Intel VT-x: <<Understanding Intel® Virtualization
Technology (VT) >>

AMD Pacifica : <<Virtualization Technology For
AMD Architecture>>

The Standards of Virtualizable
Processor Architecture

R. Goldberg’s requirements�

1. At least two processor modes.
2. A method used by non-privileged program to

invoke privileged system routines.
3. Memory relocation or protection mechanism.
4. Asynchronous interrupt mechanism.

The Standards of Virtualizable
Processor Architecture

John Scott Robin’s standards�
1. The execution manner of non-privileged

instructions are almost identical in two modes,
the user mode and the privileged mode.

2. Protection mechanism and address translation
system to isolate and protect the real machine
from the virtual one.

3. Notification on execution of sensitive
instructions and the ability to emulate them.

The Challenges On x86
Virtualization

Limitations of hardware & processor

Hardware: designed to be controlled only by one device
driver.

x86�its system features are designed to be configured
and used by only one OS. In addition, there are�

Tight-coupled between some non-strictly related
mechanisms.
Hidden part of segment registers.
Non-trapped sensitive instructions.

The Challenges On x86
Virtualization

Non-trapped sensitive x86 instructions list:
Most of them are segment/eflags bits

manipulation instructions
lar/lsl/verr/verw
sgdt/sidt/sldt/str
smsw
popf/popfd
pushf/pushfd
mov r/m, Sreg
mov Sreg, r/m
push Sreg
pop Sreg

The Challenges On x86
Virtualization

In addition, I/O and control transfer instructions
are also related to this topic.

in/ins/out/outs
sysenter/sysexit
call/jmp/int n/ret/iret

The Related Concepts & Terms

Host OS
Guest OS
VM
VMM
Hypervisor
Sensitive Instructions
Non-Virtualizable Instructions
Segment Reversibility

The Whole Structure Of VMware
Workstation

VMware’s Working Principle

Total Context Switch

x86 Processor Virtualization

Hardware Devices Virtualization

A VM-Based Rootkit (VMBR)
SubVirt

A VM-Based Rootkit (VMBR)
SubVirt

SubVirt, a VM-Based Rookit developed by Microsoft
research team and Michigan University.

Some defects on its practicality :
Depends on commercial VM software (VMware or
VPC) and a Host OS (Linux).
Modifies the system Boot sequence.
Emulates a set of different virtual devices.

The Whole Structure Of The
New VMBR

The Basic Working Principle Of
The New VMBR

No Host OS and Guest OS, the OS infected is referred
to as Target OS.

Rootkit could be loaded via a kernel mode driver.

Rootkit will occupy the topmost 4M region in linear
address space, and replace the original states in
processor with its own ones.

After being loaded, Rootkit acts as a transparent
intermediate lay between the Target OS and real
hardware, which is actually a VMM.

x86 4 Modes Virtualization

Only deal with protected mode presently, the
Target’s switching to V86 or SMM mode should
be considered in the future for practicability.

No Binary Translation or Dynamic Scan, use
completely Direct Execution for now.

x86 Instruction Execution Virtualization

Complete Direct Execution plus Privilege Level
Compression:

Scheme 1: Compress the Target OS kernel mode
(ring0) to ring3
Scheme 2: Compress the Target OS kernel mode
(ring0) to ring1 (recommended)

CPU State Information Virtualization

Rootkit reserves a small region in its memory space to
maintain the Target OS’s processor state information,
which include general register set, flag register,
segment register set, control registers, debug registers,
GDTR/LDTR/IDTR/TR, some MSRs, PIC/APIC.
The opportunity to save sensitive and non-sensitive
states.
Rootkit will use these virtual states when it emulates
some operations of Target OS, such as
interrupt/exception forwarding.

The Changes Of CPU State

smsw: low 16 bits of CR0

pushf/pushfd: IF, IOPL in EFLAGS

popf/popfd: ditto

Segmentation Virtualization

Ring Compression is the core of the whole
virtualization scheme, and its implementation depends
on the Segment Shadowing technique.

Rather than allowing hardware use the Target
descriptor table directly, Rootkit provide a shadow
descriptor table (Shadow DT) instead.

Shadow DT Structure & Shadowing Algorithm

Shadow DT Structure: shadow entries + 6 cached
entries + some Rootkit reserved entries. All shadow
entries are initialized to be not present with segment
present bits (SPB) set to 0 (unshadowed state).
Cached and Rootkit reserved entries’s DPL set to 0,
SPB set to 1.

Shadowing Algorithm used when synchronizing
descriptor pairs: For Data/Code segment descriptor,
DPL should be modified from 0 to 1 (or 3), and limit be
truncated if overlapped with Rookit space. For Gate
descriptor, its target code segment selector value
should be modified to 0

Segment Related Operations
Virtualization

Target Redefine DT
Target Modify Descriptors
Target Remap/Unmap DT
Target Segment Loading
Synchronize Segment A (Accessed) Bit

Inter-Segments Control Transfer
Virtualization

Task Switching
Call Gate
Direct jmp & call/ret Between
Segments
Interrupt/Exception
sysenter/sysexit

The Changes Of Segment
System

The Change Of GDTR

The Change Of GDT Descriptors

The Change Of Segment Selector

Segment Related Non-Virtualizable
Instructions

The Segment Irreversibility Problem

The deferred segment synchronization scheme
ensures that cached descriptors would be
updated timely when first loading (non-natural
loading) of segment descriptor.

Usually this problem only happens during
system Boot phase when switching from real
mode to protected mode.

Paging Virtualization

Two reasons for shadow paging: 1) The
stealth in both linear and physical
address space. 2) Access and Protection
bits used to play various virtualization
tricks.
Rather than allowing hardware use the
Target page directory and page table
directly, Rootkit provide a Shadow Page
Table instead.

Shadow DT Structure & Shadowing Algorithm

Initially the shadow page table is empty, that
means all entries (PDE) except for the one that
maps Rootkit itself are marked as invalid.

Target kernel mode is compressed to ring1.
Target’s all modes are compressed to ring3.

The Working Procedure Of
Shadow Paging

When #PF occurs during Target execution, Rootkit
should emulate hardware MMU’s action to traverse
Target’s page table: If no valid mapping is found, then
forwards and lets #PF to be handled by Target OS.
When valid mapping is found and it’s not caused by
physical trace (checking the fault address (CR2)), then
begins the shadowing procedure.

Shadows the corresponding PDE, creates a new page
table and shadows corresponding PTE (marks other
PTEs as not invalid), then writes protect the appropriate
portion of Target table, finally re-execute the faulting
instruction.

Physical Trace & Linear Trace

Physical Tracing: Rootkit has the ability to
install read, write, read/write traces on Target’s
physical memory pages, and be notified when
accesses (read or write) to these pages occur.

Linear Tracing: A mechanism used by Rootkit
to detect the mapping change (unmap or
remap) of a given linear region range of Target
OS.

Paging System Related
Operations Virtualization

Target Read PDBR
Target Load PDBR
Target Modify PDE/PTE
Target Flush TLB
Maintain The Accessed/Dirty Bits

Handle The Page Fault

When #PF occurs during Target execution,
Rootkit should emulate hardware MMU’s action
to traverse Target’s page table: If no valid
mapping is found, then forwards and lets #PF
to be handled by Target OS. When valid
mapping is found and it’s caused by physical
trace, then cancel the trace installed on the
mapping temporarily and restore mapping to its
degradation state after single-stepping the
faulting instruction.

Linear Address Space Confliction

Relocate the Rookit itself when its occupied
space is also mapped by Target. Just adjusts
its code segment base, no memory copy is
needed. Don’t forget to reload all processor
states affected.

As an optimization, maps the Rookit at a region
which is known not used by a given Target OS
at the first beginning.

The Changes Of Paging
System

The Change Of CR3

The Change Of Page Directory
Table/Page Table

TSS Virtualization

The Virtualization of TSS is a precondition for
interrupt/exception virtualization and I/O
instructions trapping.

Rootkit provides a private TSS, TSS descriptor,
and a ring0 stack region.

TSS Related Operations
Virtualization

Target Read TR

Target Load TR

Interrupt/Exception Virtualization

The virtualization of Interrupt/Exception is a
prerequisite. Firstly, it’s helpful to hide the virtualization
fact. In addition, it’s the only approach and foundation
for Rootkit to gain control and play all virtualization
tricks.

Rootkit provides a private IDT that pointed directly by
hardware IDTR, and a single handler (trampoline) for
each kind of exception, software interrupt, hardware
interrupt.

Processing Interrupt/Exception

Capture Interrupt/Exception

Handle the Exceptions caused by
virtualization directly

Forward the hardware Interrupts, Software
Interrupts and the Exceptions caused by
Target OS Itself

Interrupt/Exception returns of the Target OS

IDT Related Operations
Virtualization

Target Read IDTR

Target Load IDTR

Device Virtualization

Rootkit is not a virtual machine project, so it’s
unnecessary to provide a complete set of virtual
devices to Target OS, but this doesn’t mean that
Rootkit has no ability to interpose and control
the device related operations of Target OS.

Device Related Operations
Virtualization

Port Mapped I/O

Memory Mapped I/O

Hardware IRQ

DMA

The Payload of VMBR

Virtual Machine Introspection (VMI)

Demonstration: Hide any process under
icesword

Conclusion

Not a perfect virtualization, but a proof of
concept.

Future works:
More Target OS supported.
Advanced Processor Features: APIC, SMP, Machine
Check.
Dynamic Scanning.

Acknowledgement

Firstly, to all forthgoers and their works.
Next, to my colleagues and friends: Mr.
Old Song, Mr. Zheng , and Miss Zang.
Finally, to all people who have contributed
to this presentation.

Primary Documents Referenced
�1�Intel Corporation �Intel Architecture Software Developer’s Manual
Volume 2� 1997
�2�Intel Corporation �Intel Architecture Software Developer’s Manual
Volume 3� 2003
�3�VMware Inc. �System And Method For Virtualizing Computer Systems�
Dec. 2002
�4�VMware Inc. �System And Method For Facilitating Context-Switching
In a Multi-Context Computer System� Sep. 2005
�5�VMware Inc. �Deferred Shadowing of Segment Descriptors In a Virtual
Machine Monitor For a Segmented Computer Architecture� Aug. 2004
�6�VMware Inc. �Dynamic Binary Translator With A System And Method
For Updating And Maintaining Coherency Of A Translation Cache� Mar.
2004
�7�VMware Inc. �Method And System For Implementing Subroutine Calls
And Returns In Binary Translation SubSystem Of Computers� Mar. 2004
�8�John Scott Robin, Cynthia E. Irvine �Analysis of the Intel Pentium’s
Ability to Support a Secure Virtual Machine Monitor� Aug. 2000
�9�K. Lawton �Running Multiple Operating Systems Concurrently On an
IA32 PC Using Virtualization Techniques� 1999

Primary Documents Referenced

�10�Samuel T. King, Peter M. Chen, Yi-Min Wang �SubVirt
Implementing Malware With Virtual Machines� 2006
�11�Jeremy Sugerman, Ganesh Venkitachalam, Beng-Hong Lim
�Virtualizing IO Devices on VMware Workstation’s Hosted Virtual Machine
Monitor� Jun. 2001
�12�Charles L. Coffing �An x86 Protected Mode Virtual Machine Monitor
for the MIT Exokernel� May. 1999
�13�Prashanth P. Bungale, Swaroop Sridhar, Jonathan S. Shapiro
�Low-Complexity Dynamic Translation in VDebug� Mar. 2004
�14�Prashanth P. Bungale, Swaroop Sridhar, Jonathan S. Shapiro
�Supervisor-Mode Virtualization for x86 in VDebug� Mar. 2004
�15�Jack Lo �VMware and CPU Virtualization Technology� 2005
�16�Dave Probert �Windows Kernel Internals II Virtual Machine
Architecture�Jul. 2004
�17�Steve McDowell, Geoffrey Strongin �Virtualization Technology For
AMD Architecture�
�18�Narendar B.Sahgal, Dion Rodgers �Understanding Intel®
Virtualization Technology (VT) �

Thank For Attending
Question & Discussion

Time

