Politecnico di Milano
Dip. Elettronica e Informazione
Milano, Italy

Anomaly detection through
system call argument analysis

Stefano Zanero

Ph.D. Student, Politecnico di Milano
CTO & Founder, Secure Network S.r.l.

Black Hat Briefings — Amsterdam, 03/04/06

Presentation Outline

A Building a case for Anomaly Detection Systems
dBear with me if you already heard this rant :)
dIntrusion Detection Systems, not Software !
dWhy do we need Anomaly Detection ?

] State of the art in host-based anomaly detection
dSystem call sequence analysis (a lot of)
dSystem call argument analysis (a few of)

d Combining both, along with other ingredients
 Detecting O-day attacks: hope or hype ?
[Conclusions

A huge problem, since 331 b.C.

 The defender's problem

d The defender needs to plan for everything... the attacker
needs just to hit one weak point

[Being overconfident is fatal: King Darius vs. Alexander
Magnus, at Gaugamela (331 b.C.)

d Acting sensibly is the key ("Beyond fear”, by
Bruce Schneier: a must read!)

d"The only difference between systems that can
fail and systems that cannot possibly fail is that,
when the latter actually fail, they fail in a totally
devastating and unforeseen manner that is

usually also impossible to repair” (Murphy's law
on complex systems)

Murphy says: plan for the worst

d The mantra is: plan for the worst (and pray it
will not get even worse than that) and act
accordingly

At the end of the day, we must keep in mind
that every defensive system will, at some time,
fail, so we must plan for failure

[We must design systems to withstand attacks, and fail
gracefully (failure-tolerance)

J We must design systems to be tamper evident
(detection)

d We must design systems to be capable of recovery
(reaction)

Tamper evidence and Intrusion Detection

d An information system must be designed for

tamper evidence (because it will be broken into,
sooner or later)

d An IDS is a system which is capable of detecting
intrusion attempts on an information system
d An IDS is a system, not a software!
d An IDS works on an information system, not on a
network!
d The so-called IDS software packages are a
component of an intrusion detection system

d An IDS system usually closes its loop on a

human being (who is an essential part of the
system)

Breaking some hard-to-kill myths

d An IDS is a system, not a software
dA skilled human looking at logs is an IDS
A skilled network admin looking at TCPdump is an IDS

dA company maintaining and monitoring your firewall is
an IDS

A box bought by a vendor and plugged into the network
is not an IDS by itself

d An IDS is not a panacea, it's a component

dDoes not substitute a firewall, nor it was designed to
(despite what Gartner thinks)

dIt’s the last component to add to a security architecture,
not the first

1 Detection without reaction is a no-no
dLike burglar alarms with no guards!

 Reaction without human supervision is a dream
d “Network, defend thyself !”

Anomaly vs. misuse

Anomaly Detection Model

 Describes normal behaviour,
and flags deviations

O Uses statistical or machine
learning models of behaviour

O Theoretically able to
recognize any attack, also O-
days

O Strongly dependent on the
model, the metrics and the
thresholds

[0 Generates statistical alerts:
“Something’s wrong”

Misuse Detection Model

Uses a knowledge base to
recognize the attacks

Can recognize only attacks for
which a “signature” exists in
the KB

When new types of attacks are
created, the language used to
express the rules may not be
expressive enough

Problems for polymorphism

The alerts are precise: they
recognize a specific attack,
giving out many useful
informations

Misuse detection alone is an awful idea

 Misuse detection systems rely on a knowledge base (think
of the anti-virus example, if it's easier to grasp)

O Updates continuously needed, and not all the attacks
become known (as opposed to viruses)
A misuse based IDS will not, in general, recognize a
zero-day attack
O Attacks are polymorphs, more than computer viruses
(human ingenuity vs computer program)
dThink of ADMutate, UTF encoding...

A misuse based IDS will not, in general, recognize a new way
to exploit an old attack, unless there is an unescapably
necessary characteristic in the attack
 If we need intrusion detection as a complementary mean
to patching and secure design, detecting known attacks is
clearly not the solution

A Traditionally, network based IDS are mostly misuse based

Anomaly Detection, perhaps not better

 Task: describe the normal behaviour of a system
dWhich features/variables/metrics would you use?
dInfinite models to fit them

d Thresholds must be chosen to minimize false
positive vs. detection rate: a difficult process

d The base model is fundamental

AIf the attack shows up only in variables we discarded,
or only in variations we do not check, we cannot detect it

dThink of detecting oscillations when you just check the
average of a variable on a window of time
dIn any case, what we get as an alert is “hey,
something’s wrong here”. What? Your guess!

d Difficult to be relied upon for automatic defense
(i.e. IPS)

Our approach: unsupervised learning

At the Politecnico di Milano Performance Evaluation lab we
are working on anomaly-based intrusion detection systems
capable of unsupervised learning

d What is a learning algorithm ?

It is an algorithm whose performances grow over time
It can extract information from training data
 Supervised algorithms learn on labeled training data
O%This is a good packet, this is not good”
dThink of your favorite bayesian anti-spam filter
It is a form of generalized misuse detection
A Unsupervised algorithms learn on unlabeled data

UThey can “learn” the normal behavior of a system and detect
variations (remembers something ... ?)

[We have already presented in past our network based IDS,
we are presenting today our host based IDS

State of the art

 Host-based, anomaly based IDS have a long academic
tradition, and there's a gazillion papers on them

 Let us focus on one observed feature: the sequence of
system calls executed by a process during its life

d Assumption: this sequence can be characterized, and
abnormal deviations of the process execution can be
detected

A Earlier studied focused on the sequence of calls

dUsed markovian algorithms, wavelets, neural networks,
finite state automata, N-grams, whatever, but just on the
sequence of calls

dMarkov models comprise other models

A An interesting and different approach was introduced by
Vigna et al. with "SyscallAnomaly/LibAnomaly”, but we'll
see that in due time

Time series learning

A time series is a sequence of observations on a
variable made over some time

 If a syscall is an observation, then a program is
a time series of syscalls

1 If our observations are descriptive of the
behavior of systems... attacks probably are
outliers

AN outlier is an observation that deviates so much from
other observations as to arouse suspicions that it was
generated from a different mechanism

J What is an outlier in a time series ?

dTraditional definitions are based on wavelet transforms
but are not adequate for cathegorical values such as ours

 Markov chains give us an approach

What is a Markov chain ?

A stochastic process is a finite-state, k-th order
Markov chain if it has:
dA finite number of states

dThe Markovian property (probability of next state
depends only on k most recent states)

(Stationary transition probabilities (i.e. they do not
change with time)

1 Probabilities, in a first-order chain with s states
can be expressed as a matrix with s rows and
cols

dIn n-th order, with a matrix with s~n rows and cols
[Chain is irreducible if all states are reachable
dTransient, recurrent and absorbing states

d They comprise other models
LON-arams are simplified n-th order markov chains

An example of Markov chain

Markov Chain Models

transition probabilities
Prix,=a|x_ =g)=0.16
Prix =c|x_ =g)=034
Prx =g|x_ =g)=033
Prx =t|x_,=g)=012

T AmsITEoL

Training a Markov chain

d We can compute the likelihood of a sequence in a
model with a simple conditional probability

d We can build the model which fits a given
sequence or set of sequences by calculating the
maximum likelihood model, the one which gives
the various observations the maximum probability

 Can be done through simple calculations (problem
of null probabilities), or through Bayesian ones

d Comparison of probability of sequences of
different length is difficult (can use the logarithm
or other tricks to smooth)

Which Markov chain does this fit ?

d Simple answer: you compute the likelihood

A If you need to compare multiple models, this is
more complex

dYou need to take into account the prior probability, or
probability of the model, since:

P(M|O) = P(O|M) P(M) / P(O)

dP(0) is fixed and cancels out, but you usually don't know

P(M): depending on the choice, you can have varying
results

1 S. Zanero, "Behavioral Intrusion Detection”
explains the trick

Additional thought: HMMs

- A Hidden Markov Model is one where we do not
really see the state, but a set of symbols which

can be generated with some probability from each
state

d How likely is a given sequence in a HMM?
A the Forward algorithm

d What is the most probable “path” for generating a
given sequence?
d the Viterbi algorithm
d How can we learn the HMM parameters given a
set of sequences?
d the Forward-Backward (Baum-Welch) algorithm

SyscallAnomaly: analyzing the variables

d SysCall Anomaly, proposed by Vigna et al.
Each syscall separately evaluated on 4 separated models
d (maximum) string length
O Character distribution
O Structural inference
dToken search

 Each model is theoretically interesting, but
exhibits flaws in real-world situations
Structural inference

L Realized as a markov model with no probabilities...
U Too sensitive !

dToken search
[No “search”, really: you must predefine what is a token
dAgain, no probabilities

Our proposal

d We evolved the models
dStructural inference: abolished (halving false positives...)

dImplemented a model for filesystem paths (depth -
structural similarities)

dToken Search: probabilistic model

L UID/GID specialization, considering three categories:
superuser, system id, regular id

d Now, we wanted to add
dCorrelation among the arguments of a single syscall
L Hierarchical clustering algorithm to create classes of use

dCorrelation among system calls over time
U First order Markov model (a Markov chain)

What is clustering ?

d Clustering is the grouping of pattern vectors into
sets that maximize the intra-cluster similarity,
while minimizing the inter-cluster similarity

 Here “pattern vectors” are the values of various
models

d We used a hierarchical agglomerative algorithm
dPick up the two most similar items
dGroup them
dCompute distance from the new group to other groups
Repeat

d What is similarity?
dTwo patterns are similar if they are “close”

dWe had to define similarity for each model type

de.g. is /usr/local/lib similar to /usr/lib ? And to
/usr/local/doc ?

Results of clustering

 The clustering process aggregates similar uses of
a same system call

HE.g.: let us take the open syscalls in fdformat:
/usr/lib/libvolmgt.so.l, -rwxr-xr-x
/usr/lib/libintl.so.l, -rwxr-xr-x
/usr/lib/libc.so.1l, -rwXr-xr-x
/usr/lib/libadm.so.1l, -rwxr-xr-x
/usr/lib/libw.so.l, -rwXr-xr-x
/usr/lib/libdl.so.l, -rwxr-xr-x
/usr/lib/libelf.so.1l, -rwxr-xr-x
/usr/platform/sun4u/lib/libc psr.so.l, -rwxr-xr-x
/devices/pseudo/mm@0:zero, Crw-rw-rw-
/devices/pseudo/vol@0:volctl, crw-rw-rw-
/usr/lib/locale/iso 8859 1/LC CTYPE/ctype,-r-xr-xr-

X

[Each of the clusters is a separate type of syscall

n 1 /7 W

A ~ NN nnnn D27 YaAannan 27)

A matter of sequence

d We can now build a Markov chain which uses as

states the clusters of syscalls, as opposed to the
syscalls per se

d We can train the model easily on normal
program executions

At runtime we will have three “outlier
indicators”:

dThe likelihood of the sequence so far
dThe likelihood of this syscall in this position

dThe "similarity” of this syscall arguments to the best-
matching cluster

 The first is an indicator of likely deviation of

program course, the others are punctual
indicators of an anomaly

Conclusions & Future Work

 Conclusions:

IDS are going to be needed as a complementary
defense paradigm (detection & reaction vs. prevention)

In order to detect unknown attacks, we need better
anomaly detection systems

dWe can successfully use unsupervised learning for
anomaly detection in an host based environment using

dSystem call sequence
dSystem call arguments

 Future developments:

dIntegrating this to become an Intrusion Prevention
system, maybe using CORE FORCE ?

dMore extensive real-world evaluation on the go
dIntegration with our network based system

Thank you!

Any question?

I would greatly appreciate your feedback !

Stefano Zanero
zanero@elet.polimi.it
www.elet.polimi.it/upload/zanero/eng

