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What is a rootkit

• Definition might include
– a set of programs which patch and Trojan

existing execution paths within the system
• Hooks - Modifies existing execution paths of

important operating system functions

– The key point of a rootkit is stealth.

• History of Rootkits
– Replace binaries like ls, ps, du, etc.
– Bogus login program to steal passwords



Hooking in User Land

• IAT hooks
– Hooking code must run in or alter the address

space of the target process
• If you try to patch a shared DLL such as KERNEL32.DLL

or NTDLL.DLL, you will get a private copy of the DLL.

– Three documented ways to gain execution in the
target address space

• CreateRemoteThread
• Globally hooking Windows messages
• Using the Registry

– HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs
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Hooking in Kernel Space

• The operating system is global memory

• Does not rely on process context
– Except when portions of a driver are

pageable

• By altering a single piece of code or a
single pointer to code, the rootkit
subverts every process on the system



USER MODE KERNEL MODE

KiSystemService

System Call

Table Entry
System
Service
Descriptor
Table

Call nt!NtCreateFile

ZwCreateFile:

mov eax,0x25

mov edx, 0x7ffe0300

Call [edx]

0x25
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ZwCreateFile:

mov eax,0x25

mov edx, 0x7ffe0300

Call [edx]

0x25

Nt!NtCreateFile
jmp 0008:11223344

[…]

[…]
mov     edi,edi
push    ebp
mov     ebp,esp
jmp
nt!NtCreateFile+08
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System Call

Kernel or module
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Service
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Some rootkit



I/O Manager and IRP Hooking

• System Calls
– NtDeviceIoControlFile

– NtWriteFile

– Etc.

• Requests are converted to I/O Request
Packets (IRPs)

• IRPs are delivered to lower level drivers



I/O Manager and IRP Hooking

• Every driver is represented by a
DRIVER_OBJECT

• IRPs are handled by a set of 28 function
pointers within the DRIVER_OBJECT

• A rootkit can hook one of these function
pointers to gain control



Interrupt Descriptor Table Hooks

• Each CPU has an IDT

• IDT contains pointers to Interrupt
Service Routines (ISRs)

• Uses for IDT hooks
– Take over the virtual memory manager

– Single step the processor

– Intercept keystrokes



• DKOM Uses
– Hide Processes

– Add Privileges to Tokens

– Add Groups to Tokens

– Manipulate the Token to Fool the Windows
Event Viewer

– Hide Ports

Hiding Processes



KPRCB

    *CurrentThread
    *NextThread
    *IdleThread

ETHREAD

KTHREAD

ApcState

EPROCESS

KPROCESS

LIST_ENTRY {
    FLINK

BLINK             }

EPROCESS

KPROCESS

LIST_ENTRY {
    FLINK

BLINK             }

EPROCESS

KPROCESS

LIST_ENTRY {
    FLINK

BLINK             }
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FUTo – Hiding In The Handle
Table

• FUTo
– Uninformed Journal Vol. 3

– New version of FU

– Hides from IceSword and Blacklight

• Let’s understand the handle table



Kernel Structures: Handle
Tables

• Handles are an index into the Handle
Table for a particular object

• Objects represent processes, threads,
tokens, events, ports, etc.

• The kernel/object manager must do the
translation from a handle to an object
– Single point of access ensures security

checks can be performed



Kernel Structures: Handle
Tables

• Handle Table entries are 8 bytes each
• lkd> dt nt!_HANDLE_TABLE
•    +0x000 TableCode                      : Uint4B
•    +0x004 QuotaProcess                  : Ptr32 _EPROCESS
•    +0x008 UniqueProcessId            : Ptr32 Void
•    +0x00c HandleTableLock           : [4] _EX_PUSH_LOCK
•    +0x01c HandleTableList             : _LIST_ENTRY
•    +0x024 HandleContentionEvent : _EX_PUSH_LOCK
•    +0x028 DebugInfo                      : Ptr32 _HANDLE_TRACE_DEBUG_INFO
•    +0x02c ExtraInfoPages               : Int4B
•    +0x030 FirstFree                         : Uint4B
•    +0x034 LastFree                          : Uint4B
•    +0x038 NextHandleNeedingPool: Uint4B
•    +0x03c HandleCount                   : Int4B
•    +0x040 Flags                               : Uint4B
•    +0x040 StrictFIFO                      : Pos 0, 1 Bit



PspCidTable

• PspCidTable
– Job of PspCidTable is to keep track of all

the processes and threads

– Relying on a single data structure is not a
very robust

– Alterating one data structure
• OS has no idea hidden process exists



Removing From PspCidTable

• To hide from PspCidTable scanners:
– Obtain PspCidTable by scanning

PsLookupProcessByProcessId or GetVars
– Parse PspCidTable for references to rogue process’

EPROCESS
– Set those values to 0
– Setup process notify routine

• Safely restore PspCidTable as process is terminated

• Other tables to remove references from:
– CRSS
– EPROCESS Handle Table
– Beyond the scope of this talk (Read the Uninformed article)



Detecting Processes

• Blacklight Beta
– Released in March 2005

– Good hidden process and file detection

• IceSword 1.12
– Robust tool offering:

• SSDT Hook Detection

• Hidden File and Registry Detection

• Hidden Process

• Hidden Ports and socket communication Detection

• Common flaw
– Both application uses the Handle Table Detection method



Detecting Hidden Processes
 PID Bruteforce

• Blacklight
– Bruteforces PIDs 0x0 - 0x4E1C

• Calls OpenProcess on each PID
– If Success store valid PID

• Else Continue Loop

– Finished looping, take list of known PIDs
and compare it to list generated by calling
CreateToolhelp32Snapshot

– Any differences are hidden processes



RAIDE

• What is RAIDE?

• What makes RAIDE different than
Blacklight, RKDetector, Rootkit
Revealer, VICE, SVV, SDTRestore?

• What doesn’t RAIDE do?



What is RAIDE

• RAIDE is a complete toolkit offering:
– Forensic Capabilities (RKDetector)

• Dumping Process

– Hidden Process Detection (Blacklight)
– Hook Restoration (SDTRestore, SVV)
– Hook Detection (SDTRestore, SVV)
– Memory Subversion Detection
– Hidden Process Restoration

• Relink process to make it visible
• Close Hidden Process (not implemented yet)



What Makes RAIDE Different?

• RAIDE combines most existing tools
– RAIDE detects Memory Subversion

– RAIDE does not use IOCTL’s to
communicate



What Doesn’t RAIDE Do?

• RAIDE does not detect hidden files,
folders, and registry keys

• RAIDE does not restore Driver hooks

• RAIDE does not restore IDT hooks

• RAIDE is not going to keep you Rootkit
Free!



RAIDE Communication

• RAIDE uses Shared Memory segments
to pass information to the kernel
– Shared Memory contains only encrypted

data

– Communication uses randomly named
events



Hidden Process Detection

• Goal for Process Detection:
– Signature that can not be zeroed out

– Signature that is unique

– Way to verify the signature

– Signature must not have false positives



Hidden Process Detection

• Signature:
– Locate pointers to “ServiceTable”

• ServiceTable = nt!KeServiceDescriptorTableShadow

• ServiceTable = nt!KeServiceDescriptorTable

– Contained in all ETHREAD

• Diffing:
– Spawn a process with random name

• Process sends a list of processes visible to RAIDE

• RAIDE diffs the two lists finding the hidden processes



Shadow Walker Detection:
Illuminating the Shadows

• Shadow Walker relies on IDT hook
– Check IDT 0x0e for a hook

• SW could modify itself to hide the IDT hook

• Other detection schemes out there
– Remapping



Forensics

• Hook Restoration

• Relinking Processes (DKOM method
reversed)

• Dumping process



Hook Restoration

• If an SSDT index hook is detected
– Open ntoskrnl

– Obtain KeServiceDescriptorTable from file
on disk

– Obtain original address for hooked index

– Recalculate address

– “re-hook” SSDT index with original address



Hook Restoration

• If it is an inline hook:
– Open ntoskrnl on disk

– Obtain original function address

– Read first three instructions

– Restore first three instructions
• Can restore more



Relinking Processes

• DKOM is common hiding method
– DKOM relies on unlinking the EPROCESS link

pointers

– Restore link pointers by passing system eproc and
hidden eproc to InsertTailList

– Allows user to see process

• NOTE: Closing the process once visible may
blue screen system as the process was not
expecting to be closed!



Dumping Process

• Dumping Process
– Allows Security Analysts to reverse the

executable or system file and see what it
was doing.

– Does not matter if the file is originally
hidden on the HD

• Dumped file is renamed and put in working
directory

• Dumping lets analysts bypass any packer
protection



DEMO



Thanks
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Questions?


