MPLS and VPLS Security

Enno Rey, erey@ernw.de

Agenda

- MPLS Basic Terms & Technology
- MPLS VPNs
- "Layer 2 VPNs"
- Virtual Private LAN Service (VPLS)
- A look at the future

- *Multiprotocol Label Switching* [RFC 3031 et.al.]
- Technology used for forwarding packets, based on *Labels* (see below).
 Packets may carry multiple labels (for different purposes).
- Initial goal: more efficient forwarding than IP-based routing
- Used in most carrier backbones
- Serves as foundation for some 'Advanced Services'

Tag ('Label') = 20 bits S = Bottom of Stack, 1 bit COS/EXP = Class of Service, 3 bits TTL = Time to Live, 8 bits

In this scenario, we'll call them 'forwarding labels' (as that's what they serve as here).

Security discussion

- The first thing joe hacker thinks of when speaking about some forwarding ("routing" or "router's") technology is..., spoofing or injection'.
 Btw: this approach is a bit naïve... or have you ever seen a successful 'ospf injection attack'?
- But: the just discussed 'forwarding labels' have local significance only. Two neighboring peers agree on their significance by means of some *label distribution protocol*.
- So injecting/modifying 'forwarding labels' would not allow much profit...
- However, those nice little shiny labels can serve many other purposes...

MPLS Services

- VPNs ("Layer 3" or "Layer 2")
- Any Transport over MPLS
- Virtual Private LAN Service
- MPLS Traffic Engineering
- Generalized MPLS (GMPLS)

MPLS as a Foundation for Advanced Services

MPLS Services

- Some of these technologies (e.g. Traffic Engineering) are relevant for ISPs/carriers only.
- Others ("Layer 3 VPNs", "Layer 2 VPNs") may be rather important for organizations. Either for customers of a backbone provider or for use in campus networks.
- Increasingly "Layer 3 MPLS VPNs" are used in enterprise networks, for traffic separation/segmentation (kind of "modern VLAN technology").

MPLS VPNs ("Layer 3 VPNs")

- MPLS-based technology [mainly RFCs 2547 & 2917] with it's own concepts and terminology.
- Comparable to Frame Relay/ATM in some respects.
- Highly 'virtual' technology (shared infrastructure, separated routing).
- Additional (MPLS-) labels are used to establish logical paths/circuits for the traffic of single customers.
- Very flexible with regard to topologies (by means of *route targets*).

MPLS VPNs – Terminology

- P network (Provider network)
 - The ISP's backbone
- P router (Provider router)
 - Backbone router of ISP
- PE router (Provider Edge router)
 - ISP's router responsible for connecting the CE device to MPLS backbone
- C network (Customer network)
 - The customer's network
- CE router (Customer Edge router)
 - Router connecting the C network to the PE (may be under control of customer or ISP)

During transport two labels are used: one to identify the 'egress PE', the other one to identify the customer/a particular VPN.

MPLS VPNs ("Layer 3 VPNs")

Shared' router handles different VRFs

MPLS VPNs ("Layer 3 VPNs")

A more complex view

What happens here in detail

- PE routers assign labels to prefixes per VPN (*route distinguisher*).
- This information (label, route distinguisher, prefix) is then exchanged between PEs by *Multiprotocol BGP* [RFC 2283].
- => one PE knows which other PE is responsible for a given prefix in a given VPN.
- When a packet leaves an ingress PE, the packet has (at least) two labels:
 - one 'forwarding label' for transport to the egress PE across the backbone.
 - a second one identifies the VPN (and prefix) of the destination.
- In short: "labels do the whole VPN thing here".

Security – the 'official point of view'

from ([1])

Security – you should consider...

- No encryption
- PE device (usually) is shared with other customers.
- What about internal audit requirements?

=> Risk assessment needed

- You all certainly knew these things ;-)
- Let's talk about possible attacks then...

Given it's a 'VPN' technology, interesting attacks include eavesdropping and/or unauthorized access. We are not interested in DoS...

- Injection of (pre-) labeled traffic from a CE
- Injection of (pre-) labeled traffic from the internet
- Modification of MP-iBGP sessions to establish 'incorrect VPNs'
- Label modification/injection in the backbone

Injection of labeled traffic from a CE (Customer A tries to insert packets into Customer B's VPN)

 According to RFC 2547 "labeled packets are not accepted by backbone routers from untrusted or unreliable sources".

=> a PE should discard labeled packets arriving from CEs (as those are 'untrusted').

• This seems to be true (tested against Cisco routers).

Injection of labeled traffic from the internet (internet based attacker tries to insert packets into some customer's VPN).

- Requires:
 - knowledge of IP addresses and labels, e.g. by simple guessing (not too difficult).
 - reachability of PE or P-router from the internet (depending on design probably more difficult).
 - transport of labeled packet from origin to router in question (not clear).
- As of RFC 2547 (see above) such packets should be discarded anyway (given their 'untrusted origin').
 However *Behringer/Morrow* state this attack is possible under certain conditions/with certain Cisco IOS versions [5].
- We tested against some current *IOS Service Provider images...* without success.

Modification of MP-iBGP sessions to establish 'incorrect VPNs'

- Definitely possible (with potentially broad impact).
- Requires:
 - access to core (debatable, see below).
 - the right tools at point of attack (may be difficult, as point of attack is probably a router)
- As BGP information is not updated regularly, an attacker will
 - either have to be able to intercept the inital MP-BGP exchange
 - or have to withdraw VPN routes (BGP update with other NLRI) and insert new ones.
- Both scenarios may be difficult to obtain.

MP-BGP session

Modification of label in the core to insert packets into VPNs

- Requires:
 - access to core (debatable, see below).
 - the right tools at point of attack (may be difficult, as point of attack is probably a router).
- If these requirements are met... the attack itself is easy.

Attack scenario

Label modification/injection in the backbone

(1) These are the labels on one PE

pe_7204vxr>sh ip vp	vpnv4 vrf alpha	labels	
Network	Next Hop I	n label/Out label	
Route Distinguisher: 100:1 (alpha)			
20.20.20.21/32	10.10.10.25	nolabel/17	
20.20.20.40/32	172.31.2.2	19/nolabel	
172.31.1.0/29	10.10.10.25	nolabel/18	
172.31.2.0/29	0.0.0.0	17/aggregate(alpha)	
192.168.5.0	10.10.10.25	nolabel/19	
pe_7204vxr>sh ip bg	p vpnv4 vrf beta	labels	
Network	Next Hop I	n label/Out label	
Route Distinguisher	: 100:2 (beta)		
172.31.1.0/29	10.10.10.25	nolabel/20	
172.31.2.0/29	0.0.0.0	16/agg regate(beta)	

(3) This is a tcpdump from a system in VPN *beta* that first gets pinged 'normally' and then receives the re-labeled ping from VPN *alpha*

01:55:45.993783 IP 172.31.1.2 > 172.31.2.2: icmp 40: echo request seq 17408 01:55:45.993815 IP 172.31.2.2 > 172.31.1.2: icmp 40: echo reply seq 17408 01:55:46.995175 IP 172.31.1.2 > 172.31.2.2: icmp 40: echo request seq 17664 01:55:46.995211 IP 172.31.2.2 > 172.31.1.2: icmp 40: echo reply seq 17664 01:55:47.996723 IP 172.31.1.2 > 172.31.2.2: icmp 40: echo request seq 17920 01:55:47.996756 IP 172.31.2.2 > 172.31.1.2: icmp 40: echo reply seq 17920

01:59:14.136855 IP 172.31.1.2 > 172.31.2.2: icmp 80: echo request seq 5725 01:59:14.136906 IP 172.31.2.2 > 172.31.1.2: icmp 80: echo reply seq 5725

(2) Here packets from VPN *alpha* are sniffed + ,re-labeled' as belonging to VPN *beta*

■ Harey@ws23:~/bh - Shell - Konsole Session Edit View Settings Help	• 🗆 🗙
[erey@ws23 bh]\$ # sniff labeled packets [erey@ws23 bh]\$ # and save them for future use [erey@ws23 bh]\$ sudo tethereal -nxi eth0 > packets Password: Capturing on eth0	-
[erey@ws23 bh]\$ # modify packets [erey@ws23 bh]\$ sudo vi ./packets [erey@ws23 bh]\$ sudo vi ./packets [erey@ws23 bh]\$ cat ./packets 0000 00 1; 03 33 b1 08 00 d0 ff b7 68 a9 88 47 00 013h.,G 0010 01 f3 45 00 00 64 00 96 00 00 fe 01 60 c0 ac 1fEd 0020 04 02 ac 1f 02 02 08 00 4d 56 1b 9e 16 5d 00 00MV] 0030 00 00 02 68 fc 90 ab cd ab cd ab cd ab cd ab cd ab cd ab	
0040 ab cd ab <	
<pre>[erey@ws23 bh]* # convert to binary [erey@ws23 bh]* xxd -r ./packets ./packets.bin [erey@ws23 bh]* xxd -r ./packets ./packets.bin [erey@ws23 bh]* # and re-inject on the wire [erey@ws23 bh]* # and re-inject on the wire [erey@ws23 bh]* sudo ./file2cable -v -i eth0 -f ./packets.bin Password: file2cable - by FX <fx@phencelit.de> Thanx got to Lamont Granquist & fypdor for their hexdump() ./packets.bin - 118 bytes raw data</fx@phencelit.de></pre>	
0011 9333 b108 00d0 ffb 68a9 8847 00013hG 01fe 4500 0064 0096 0000 fe01 60c0 aclfEd 0102 aclf 0202 0800 4c56 lb9e 155d 0000 0000 0268 fc90 abcd	
Ney Shell	

Conclusions

- Label modification & subsequent "VPN hopping" can be done.
- It's a one-way street, though
 => can only be used for 'stateless attacks' (e.g. via SNMP).
- Note: attacks will go undetected as there's no checksum or sth.
- Modifying MP-BGP packets may offer road to more efficient attacks. But probably more difficult to perform.
- Both attacks require 'access to core'.

Access to core

In most security discussions the core is assumed to be trusted (e.g. [1]). This sounds a bit naïve, however I tend to agree. But:

- MPLS VPNs are used more and more in campus networks.
- Providers may be connected via IXPs.
- And:

MPLS "Layer 2 VPNs"

- Term usually designates Any Transport over MPLS [AToM]
- AToM: Technology for transport of different layer 2 protocols (e.g. ATM, Frame Relay, Ethernet, PPP, HDLC) over MPLS backbone.
- Can be very useful for providers or customers, for various reasons.
- Operates with *Pseudo Wires* = logical circuits established between MPLS capable backbone devices.
- Several L2 protocols may be encapsulated, labeled and transported over these pseudo wires, e.g. FRoMPLS, AAL5oMPLS, CRoMPLS.

MPLS "Layer 2 VPNs"

- Inner workings are roughly the same as with Layer 3 VPNs: packets have (at least) two labels, one for forwarding purposes, another to identify a customer site/virtual circuit.
- In some cases there may be an additional *control word* carrying supplementary information (e.g. FR BECN/FECN). Some attacks may be possible here (though not covered in this presentation).
- Modifying labels should allow "VPN hopping" as described above.
- There are two variants that are of particular interest for us: *Ethernet over MPLS* [EoMPLS] *Virtual Private LAN Service* [VPLS]

Ethernet over MPLS

This provides point-to-point connectivity only. Therefore does not scale.

CE devices may be switches.

Refresher: some characteristics of Ethernet

- Broadcast medium
- MAC learning on switches
- Multicast/broadcast/unicast-frames with unknown destination MAC are flooded
- Loop avoidance by means of *Spanning Tree Protocol[s]*, STP
- VLANs
- And *trunks*
- All this might/must be emulated by these technologies.

EoMPLS/VPLS 'parameters'

Transparency: what is transported?
 [ethernet traffic with/without VLAN tags, may VLAN IDs be chosen by customer?, what BPDUs are transported/must those be IEEE-compliant? etc.].

If 'fully transparent': a packet is thrown in on one side and leaves on the other exactly as thrown-in. In this case it may not be too important who owns & manages the CE as the main purpose is to provide transparent *ethernet* connectivity. Customers usually are identified then based on the ingress interface.

- Responsibility: who is responsible for what kind of filtering, if any required? And who has the necessary knowledge?
- Design: is there some Layer 2 device between the ('MPLS-performing') PE and the CE?
 If so: how are the VCs built up now? What about transparency & security then?
- Most of these parameters seem to be not yet definitely clear...
 ... to none of the participating parties ;-))

Hypothesis

"Implementing ethernet via WAN technologies (here: MPLS) will create new challenges in terms of network security."

- Current state of affairs: carriers do not sell *transparent* ethernet.
- => customers do not get "real ethernet" (e.g. they can't choose VLAN numbers)
- => carriers will have to offer "real" (transparent) ethernet.
- And this is already the case in some vendors' implementations (e.g. Juniper's VPLS implementation).
- Other vendors (Cisco) have proprietary protocols for the very same purpose (Cisco Layer2 Protocol Tunneling [L2PT, do not confuse with L2TP]).

Imagine a fully transparent ethernet connection was provided... then some interesting scenarios would evolve ;-))

STP Root Election

Some customers may want redundant connections...

Note (for all network admins here): there is no easy solution for this one.

Some customers may want redundant connections...

In another country...

where *Carnivore/DCS 1000* applies (or a different 'understanding of intellectual property' exists)...

Unencrypted!

The impacts of VTP....

... when it melts down your whole network. [as it still holds a high *VTP revision number*]

What about VLANs?

Most organizations have organization-wide IP addressing plans (i.e. Layer 3), but no organization-wide VLAN structures (Layer 2).

Assessment

- All these may be "network problems"...
- But they do have security impact!
- And always remember aspects like 'no encryption', 'shared PE' etc. (see above)

• Given this is a talk at *Black Hat* ...we should now focus attacks again.

Attacks in the age of VPLS

Can be divided into:

- Attacks "over the cloud"
- Attacks against VPLS-performing devices

Attacks "over the cloud"

- **Depend highly on the level of transparency the "VPLS cloud" provides.**
- Given full transparency (as in *Juniper*-based testbed we used)...
- ... you can perform any classical layer 2 attack over the cloud.
- We tested this successfully with *yersinia*.
- This is pretty cool: sitting in Paris and arp-spoofing/sniffing some boxes located in Amsterdam...

Attacks against VPLS-performing devices

- Depend highly on the functions they perform.
- Remember: the image "VPLS cloud = big virtual switch" is not entirely correct (e.g. as those devices usually do not participate in STP/other infrastructure protocols).
- So many layer 2 attacks may not be feasible.
- But those devices do learn (and store) MAC addresses.
- You thought *MAC table flooding* nowadays no longer works?

This is what we saw in a testbed

Bunch of Juniper M7i routers (note: these are considered 'big iron').

```
    Just sitting around doing nothing at all.
```

```
lab@JESSICA# run show chassis cfeb
CFEB status:
  State
                                 Online
 Intake Temperature
                              27 degrees C / 80 degrees F
                              34 degrees C / 93 degrees F
 Exhaust Temperature
 CPU utilization
                               2 percent
 Interrupt utilization
                               0 percent
 Heap utilization
                               8 percent
 Buffer utilization
                              26 percent
 Total CPU DRAM
                             128 MB
 Internet Processor II
                                 Version 1, Foundry IBM, Part
number 164
  Start time:
                                 2006-01-20 08:34:29 CET
 Uptime:
                                4 hours, 10 minutes, 21 seconds
```

This is what we saw in a testbed

Back to my hypothesis

- "Implementing ethernet via WAN technologies (here: MPLS) will create new challenges in terms of network security."
- You get the idea (hopefully)...

So what can/should be done

- Get familiar with filtering mechanisms/ACLs on layer 2.
- Define responsibilites (ISP vs. customer)
- Closely monitor CE devices and infrastructure traffic entering/leaving on 'uplinks to cloud'.
- We will develop config templates for Cisco-based CE devices in the near future. If interested in those drop me an e-mail (erey@ernw.de).

Summary

- MPLS is not just a forwarding technology but serves as a foundation for various 'services' also.
- Amongst these are different 'VPN technologies'.
- Under certain conditions these may be attacked or security problems may arise, so thorough risk assessment should be performed.
- There are new technologies emerging that provide 'ethernet services' over MPLS, namely Virtual Private LAN Service.
- The subsequent merger of Layer 2 and Layer 3 will have broad implications for current paradigms of network security.

... and answers.

Thanks for attending!

And now: Eat, Drink, Network and be Merry!

Sources

 [1] Presentation MPLS Basics and In-Depth: http://www.rhic.bnl.gov/RCF/UserInfo/Meetings/Technology/Archive/0 6-30-04-CISCO/BNL-MPLS-Intro-Services-6-30-04.ppt

[2] http://www.nanog.org/mtg-0306/pdf/thomas.pdf

[3] Cisco presentation Security in Core Networks: http://www.cisco.com/global/HU/rendezvenyek/presentations/Securit yinCoreNetworks.pdf

[5] Michael H. Behringer/Monique J. Morrow: MPLS VPN Security (Indianapolis 2005)