


Introduction

Overview

• Embedded Systems Basics

• Real Time OS

• The ARM Architecture

• The JTAG Interface

• The UART Interface

• Introduction To the ICE (In-Circuit Emulator)

• Interfacing With The Embedded System

• Reverse Engineering And Debugging

• Defeating The Watchdog

• Exploiting The Vulnerability

• Shell-code Example



Embedded Systems Basics

Embedded Systems Are Everywhere

Automobiles, Cell-phones, Routers, Microwaves –
Embedded devices are an integral part of our daily lives.

The popularity of internet-connected and wireless devices
is rapidly increasing

Where there is code – There are flaws!



The Target

DI-604 Broadband Router

A popular home router – ARM9E 150Mhz processor, 1MB FLASH,
8MB SDRAM, 6 ETH PORTS, ThreadX RTOS



Embedded Systems Basics

The Internals – D-Link 604 Router

JTAG

SDRAM

FLASHCPU

FPGA

UART



Embedded System OS

Thread-Based:

VxWorks, ThreadX, Integrity, etc

Process-Based:

RTLinux, OS-9

Thread-based RTOS’ are widely used due to fast
performance and low overhead.



The ARM Architecture

The ARM9E-S Processor

The ARM9E processor in the DLINK is a synthesizable version of
the ARM9TDMI core.

Implements an extended version of the ARM instruction set

Supports full ARM architecture v5TE.



The ARM Architecture

ARM Assembly

The ARM is a typical RISC architecture with some additions:

• Control of the ALU and shifter in every data processing instruction

• Auto-increment and auto-decrement addressing modes

• Load and Store multiple instructions

• Conditional execution on all instructions

ARM has 31 general purpose 32 bit registers – 16 registers are
visible at any one time.

R13 and R14 have special roles – the link register and program
counter.



The ARM Architecture

ARM exception vectors



The Marvell Chipset

The Marvell 88E6218

The 88E6218 chipset is specifically designed for Router applications.

Processor is ARM9E based, running at 150MHZ, 7 Switch ports, 1MB
embedded memory, 16 GPIO ports, 1 UART

Supports both the ARM and THUMB instruction set.



The JTAG Interface

Introduction to JTAG

The JTAG interface is supported on-chip.

Five dedicated signals must be provided on each chip that supports
the JTAG standard.

TRST – Test-Reset: initializes and disables the test interface

TCK – Test Clock: independent timing control

TMS – Test Mode Select: controls state transitions

TDI – Test Data Input: supplies data to the JTAG registers

TDO – Test Data Output: outputs data from the JTAG registers.



The JTAG Interface

Locating the JTAG test points

Acquire vendor chip pin-out.

Use voltmeter to verify connections.

Possibilities:

• Full JTAG connector on PCB

• Individual JTAG points

• No JTAG points (solder directly to chip)



The JTAG interface

Building a JTAG Connector

If a pre-installed JTAG connection is not available, a JTAG connector
must be built.

This schematic is for the ARM Multi-ICE.



The ICE (In-Circuit Emulator)

The ARM Multi-ICE

The Multi-ICE supports all current ARM processors:

ARM7, ARM9, XSCALE, etc

Fast and reliable, supported by

most debuggers via RDI interface.



The UART Interface

The Serial Interface

Most chipsets will support a UART interface.

The serial interface can be used to view program output over a
serial connection.

A level-shifter must be incorporated into the adapter. The USBMOD3
level shifts and outputs over USB.



The UART Interface

Simulating the UART with macros

Serial output can be viewed by setting breakpoint macros.

Set macro to execute on dbgprint, and use macro to print serial data
to console

// UART simulator

__var sbuf;

uartsim()
{

sbuf =__readMemory32(0x00,"Register");
__message "UART output:", (char *)sbuf, "\n";

return 0;
}



Connected JTAG



Embedded Debuggers

Unfortunately, no excellent embedded debuggers – each have
their shortcomings.

We use IAR Embedded
Workbench

Unfortunately problems exist:
breakpoints sometimes flaky,
occasional incorrect values.



Embedded Debuggers - DEMO

DEBUGGING DEMO



Retrieving the firmware image

Retrieve the firmware image to disassemble within IDA.
Useful for locating vulnerabilities, mapping API calls, etc.

3 options:

 Rip image from flash chip via JTAG
 Dump memory to file from within debugger
 Download firmware image from Vendor (usually encoded)



Retrieving The Firmware Image

There are many standalone products that offer flash reading/writing.
Debuggers often include a flash read/write option.

Most common flash memory chips are supported.



Analyzing firmware

Firmware Reversing

Most firmware updates are encoded/check-summed.

Decoder routine can be found by reversing the memory dump or live
debugging.

The DI-604 firmware is compressed and check-summed to verify
original firmware.

Checksum routine is simple to find by reversing “upload firmware”
code snippet.

A small tool was written to patch firmware after modification – any
hacked firmware may be uploaded.



Analyzing Firmware

Checksum routine



The Watchdog Timer

Many embedded systems implement a watchdog timer.

The watchdog can be a dedicated hardware register, or may be
implemented with external circuitry.

Watchdog will reset embedded system when

a debugger is attached.



The Watchdog Timer

Defeating the Watchdog

• Write to watchdog register

• Locate watchdog reference and patch

• Trap exception vector 0 (reset)



Exploiting The Vulnerability

Stack Overflow

(upnp)



Exploiting The Vulnerability

Shellcode Creation

ARM9E processor supports switching to thumb state. Thumb state
is very helpful for shellcode creation.

ARM:

• 32 bit instructions, word aligned

THUMB:

• 16 bit instructions, half-word aligned. (smaller code size, easier
to avoid NULL bytes)

Achieve thumb state by executing BX with state bit cleared in
register.



Exploiting The Vulnerability

Basic Instructions



Exploiting The Vulnerability

Shellcode Possibilities

• Program the hardware directly (ref: Yuji Ukai, PacSec 2005)

• Reverse Firmware and map out API calls (dump password over port,
embedded sniffer.)

• Memory patch to allow debug access to router

But we’ll take a different route.



Exploiting The Vulnerability

How to Own Everyone

Two phase exploitation.

1. Send initial exploit

• Disable admin password

• Enable remote configuration

2. Upload hacked firmware

• Modify firmware, re-checksum

• Modified code monitors data and injects hostile code



Exploiting The Vulnerability

Initial exploit

Debug/reverse code that opens remote configuration.

Remote cfg flag: 0x293506

0 = DISABLED 1 = ENABLED



Exploiting The Vulnerability

Initial exploit

Clear Administrator password:

Password compared at location 0x290190. Overwrite data
with NULL bytes.



Exploiting The Vulnerability

Initial exploit

Set up password and remote configuration flags, then directly call
the save_settings routine.

Mem-patch end of subroutine to perform a soft reset. (mov pc, #0)

Save_settings is called when settings are changed via the dlink web
interface.

We also can take advantage of this function 



Exploiting The Vulnerability

Final exploit.

Exploit stack overflow in upnp processing, execute shellcode:

• Uses thumb state to overwrite needed memory locations
(password, remote cfg)

• Overwrites the end of the save_settings routine with a branch to
the reset vector

• Leaves thumb state, and branches to the save_settings routine

• Router reboots – admin password cleared, remote configuration
enabled.



Exploiting The Vulnerability

The Injector

• Monitors all web traffic

• Waits for an executable download

• Injects custom executable code into download

• Everyone downloads EXE files 



Exploiting The Vulnerability

The Injector

Considerations:

• Will need a patch location with a pointer to the IP packet

• Will need to modify each packet that meets criteria

• Will need to re-checksum packet and update fields.

• Only process HTTP traffic, and only executable downloads



Exploiting The Vulnerability

The Injector

Patch Location:

Router checks for malformed IP packets – lets patch!

Patch location has a pointer to the IP packet, replace branch with a
branch to our ROM code.

PATCH



Exploiting The Vulnerability

The Injector – Our ROM Code

• Check for port 80 (HTTP)

• Check headers for download

• Check content-length size

• Check for executable headers

• Inject executable code

• Create pseudo-header

• Re-checksum TCP packet

• Return to original code



Exploiting The Vulnerability

INJECTOR DEMO



Conclusion

Embedded Systems open a whole new world of possibilities

They still have the “classic” bugs which are near non-existant
in the software realm

I hope I’ve shown that exploiting hardware isn’t just a
“gimmick” and that the threat is real.

Thanks!.



NO TOASTERS ARE SAFE!!!


