
Paraegis Project Round 2:
Using Razorwire HTTP proxy to

strengthen webapp session
handling and reduce attack surface

Black Hat Europe 2006

Project Paraegis is:

Currently Hosted at:
www.anachronic.com/paraegis

and also may be found at
www.ionize.net/paraegis

and
www.paraegis.com

We are unsure yet were final source releases will
be hosted, but links to Code Project, Sourceforge,
and various code locations will be tracked above.

Project Paraegis is:
 A software experimentation project focused on

web application security.

 Working closely with OWASP.

 Trying to create the Snort of webappsec.

 Providing open source and free solutions.

 Based on belief that simple XSS attack surface
issues don’t need multi-$100 thousand dollar
(euro) appliances to fix.

 Privately sponsored by the members.

Who
Arian J. Evans

Researcher, Teacher, Breaker, Coding Faker
FishNet Security http://www.fishnetsecurity.com

Dan Thompson
Coder, Researcher, Web stuffs

Secure Passage http://www.securepassage.com

Mark Belles
Coder, Researcher, Framework

Secure Passage http://www.securepassage.com

 The increasing complexity of script-injection attacks.
 Controlling browser sessions through framing and

session riding to do Bad Things.
 Scanners cannot show you this
 WAFs (and good coding) can protect initial attack

vectors to launch these attacks.
 Show similar example as Jeremiah’s Phishing with

Super-Bait (refinement inspired by that work)
 Demonstrate our evolving freeware proxy and how it

can help you stop these issues.

What this presentation is about:

The Application must defend itself

First and most important application
security principle:

 The Application Must Defend Itself

The Application must defend itself

Second principle we are being forced to
consider frequently:

 Defense in depth because new
coders always make old mistakes

Presentation Overview
I. Introduction (done)
II. Reminders concerning the Wibbly Wobbly Web
III. Stuck to the Web of the Now:

I. Still a HUGE *Problem of Particulars*
II. Taxonomy of Threat, Attack, Weakness, Vulnerability

IV. Script Injection, XSS, CSRF, Web Trojans, ‘Session
Riding’, and Super-Bait review

V. Paraegis defensive concepts
VI. Razorwire Proxy Demo, Super-bait frame injection

type attack demo, simple XSS variants
VII. Q&A (Please feed the Messengers)

Chapter Two

Reminders in case
you forgot about the
Wibbly Wobbly Web

Lightweight and Stateless by Design
I. HTTP and “Session Management” designed to be:

_ Lightweight and Stateless
_ Focus was on minimizing overhead, not security: reference

RFC 2109 and 2956 on HTTP state management mechanism

II. Perception Problems (until recently):
_ Not me targeted (who would target me? why?)
_ Buy more firewalls
_ Not me accountable
_ You can’t do anything with an XSS

(we have prescribed medication and shut down a call
management system with XSS, amongst other funs)

Chapter Three

Stuck to the Web of
the Now:

Of Particulars and
Taxonomies

Webappsec Vendor Marketing Hype

I. The Problem of Particulars
_ XSS, XST, XDS, XDF, CDC (!), XBS: why particulars can hurt

more than they help
_ Misses the many-to-one mapping between threats, attacks,

and weaknesses
_ We all know the game of selling managers/auditors bullet-

point friendly products

II. Classification Systems
_ What is *really* being exploited?
_ *What* exploits result in real loss? (Not what the threads on

webappsec@sf are talking about.)
_ Confusing terminology for developers, management,

security folks, etc. blurs threat, attack, weakness

Chapter Four

Script Injection, XSS, CSRF, Web
Trojans, ‘Session Riding’, and

‘Super-Bait’

Basic Script-Injection/XSS Categories

I. Short Sweet Categorization/Taxonomy:

1. URL-based attacks
2. Non-URL based attacks

a) Header value
b) body data
c) local DOM

scanners and FAQs seem to find these equal,
but they are clearly significantly inequal in attack
surface for reflected attacks

Limited Background
 Started with: “Cross Site Request Forgeries”

http://www.securityfocus.com/archive/1/191390
 “Session Fixation” by Mitja Kolsek

http://www.acrossecurity.com/papers/session_fixation.pdf
 “Web App Session Strength” by Michael Schema at BH Vegas 2004

http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-shema-up.pdf and
Schema’s February 05 RSA presentation on same explores session token
weaknesses, both excellent but fail to address newer session and authorization
automation attacks.

 Innocent Code by Sverre Huseby introduces automated session attacks under
the name “Web Trojans” with a nice discussion of using nounces.

 “Session Riding” by Thomas Schreiber
http://www.securenet.de/papers/Session_Riding.pdf provides second public
documented insight into automated session and authorization attacks; contradicts
“Session Fixation” suggested practices/defenses.

 Attack Tools listed in our whitepaper on this subject linked below, include very nice
efforts like Anton Rager’s XSS Proxy: http://sourceforge.net/projects/xss-proxy and
our C# XSS controller based off a combination of our work and Jeremiah
Grossman.

 A whole list of info on session attacks in a paper you can download off of
http://www.anachronic.com/paraegis since the list got too long for this slide. There
are a number of people who have discussed this subject and come to very different
conclusions about the solution, and all are worth exploring.

 Attack Demo Time:

Obviously a demo
might be in
order here

Chapter Five

Paraegis defensive
concepts

The Application must defend itself

First and most important application
security principle:

 The Application Must Defend Itself

This implies that throwing widgets on your
network won’t help you solve the real problem.

Especially if you are an ISV, unless you are
trying to sell protection widgets too…

Essential Web App Self-Defense

I. Input Validation
II. Output Encoding
III. Strong Session-Handling Techniques
IV. Authorization Enforcement
V. Human Detection
VI. Anti-Automation

Chapter Six

Okay, no more talked of
DATs, nounces, and
other boring stuffs.

Chapter Six

Razorwire Proxy Demo:
Super-bait frame injection type attack

Simple XSS variants
Razorwire token and rewrite modes

Enforcing Authoritative Action

IV. Design by Number

1. Use DATs and DFFs to protect sensitive functions
2. Enforce DATs and DFFs at and post authentication
3. Define application function Entry-Points
4. Define application function Exit-Points
5. Enforce function workflow from Entry-Point by:

a. Validating DSTs at each workflow step
b. Requiring unique DATs for each workflow step

6. Ensure tokens are destroyed at function Exit-Point

Project Paraegis

Code

Project Paraegis

Execution

Project Paraegis

Trival Attacks
Thwarted

Project Paraegis

How you
configure/use

Razorwire

Chapter VII

Q&A:
Shoot the Messengers

Additional Notes

References
 Paraegis http://www.anachronic.com/paraegis
 OWASP http://www.owasp.org
 WASC http://www.webappsec.org
 SecureCoding http://www.securecoding.org
 STRIDE Threat Models http://www.microsoft.com
 “An Object-Oriented Approach to Web-Based

Application Design,” Theory and Practice of Object
Systems (TAPOS), special issue on the Internet, vol. 4,
no. 4, 1998, pp. 207-225, D. Schwabe and G. Rossi.

 “Measuring Relative Attack Surfaces” http://www-2.cs.cmu.edu/~wing/

Arian J. Evans
http://www.anachronic.com

913.888.6524 (H)
913.710.7085 (M)

arian (at) anachronic{dot}com

Daniel Thompson
http://www.ionize.net

816.421.1901 (O)
816.509.7998 (M)

daniel (at) ionize{dot}net

Mark Belles
http://mrbelles.brinkster.net/

816.421.1901 (O)
913.555.1212 (M)

markbelles (at) gmail{dot}com

