
http://www.fishnetsecurity.com

http://www.fishnetsecurity.com/

Black Hat Europe 2005

Building Zero-Day Self-
Defending Web Applications:

Enforcing Authoritative Action to Defend
against State, Session and

Authorization Attacks

Black Hat Europe 2005

Self-Defending Web
Applications Simple Version:

Session and Authorization Strength

Who
Arian J. Evans

Researcher, Teacher, Coder, Breaker
Senior Security Engineer

FishNet Security, Application Security Services

FishNet Security
Security Consulting Company with Focus on AppSec

They pay me to test and fix things (blah, blah)
(In Europe you may have heard of the company Secure Passage that

makes Firemon, a spin-off of FishNet’s Application Group)

http://www.securepassage.com/

What this subject is about:
Lack of understanding of session weaknesses
and techniques to defend against session and
authorization attacks.
Limited documentation on the real threats to
weak sessions and authorization attacks.
Limited documentation on proper use of
dynamic tokens in web applications.
Limited documentation on use of newer
session-oriented technologies.

Limited Background
Started with: “Cross Site Request Forgeries”
http://www.securityfocus.com/archive/1/191390
“Session Fixation” by Mitja Kolsek
http://www.acrossecurity.com/papers/session_fixation.pdf
“Web App Session Strength” by Michael Schema at BH Vegas 04
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-shema-up.pdf and
Schema’s February 05 RSA presentation on same explores session token
weaknesses, both excellent, but fails to address newer session and authorization
automation attacks.
“Session Riding” by Thomas Schreiber
http://www.securenet.de/papers/Session_Riding.pdf provides first public
documented insight into automated session and authorization attacks; contradicts
“Session Fixation” suggested practices/defenses.
Fake vulnerability disclosure on session attacks by Anachronic (myself) and
follow-up discussion demonstrated surprising lack of understanding or interest in
these issues in the webappsec and webapp development communities.
“Host Naming & URL Conventions” by Gunter Ollman
http://www.ngssoftware.com kindof sortof partially addresses defenses to URL-
based session/authorization attacks.

http://www.securityfocus.com/archive/1/191390
http://www.acrossecurity.com/papers/session_fixation.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-shema-up.pdf
http://www.securenet.de/papers/Session_Riding.pdf
http://www.ngssoftware.com/

Why do you care about Session
and Authorization Security?

Everyone is doing the same
thing; how bad can it be?

Why do you care?

::High Risk::
Session weaknesses are real, easy to target

::You are Targeted::
Incident Response on the Rise; Real Money is finally being

made from web hacking

::You are Accountable::
Regulations, Management finger-pointing, (anecdote of the

once-unaccountable now outsourced dev team)

The Application must defend itself

First and most important application
security principle:

The Application Must Defend Itself

Presentation Overview
I. Introduction (done)
II. Chapter One: In the Beginning was the Wibbly Wobbly

Web
III. Chapter Two: Stuck to the Web of the Now
IV. Chapter Three: Subverting Session & State, and

Automating Authorization Attacks
V. Chapter Four: Self-Defending Dynamic Session

Security: DATs, DSTs, and DFFs
VI. Interlude: Interactive Session with the Devil
VII. Chapter Five: Spinning Security in the Web’s Future
VIII. Chapter Six: Q&A (Shoot the Messenger)

Chapter I

In the Beginning was
the Wibbly Wobbly

Web

Lightweight and Stateless by Design

I. HTTP and “Session Management” designed to be:
− Lightweight and Stateless like my ex-girlfriend
− Fast: 9600 baud was the pride of the neighborhood
− Minimize Overhead vs. Secure: RFC 2109 and 2956

II. Race to First Place:
− Competition to be *First*
− Little real loss; ask Randy Moss: $10k USD “ain’t ****”

III. Perception Problems:
− Not me targeted (who would target me? why?)
− Not me accountable
− Whatever, sandbagger, we’re making $$$

Chapter II

Stuck to the Web of
the Now

Security Vendor Marketing Hype

I. The Problem of Particulars
− XSS, XST, XDS, XDF, XBS: why particulars can hurt more

than they help (reference: Issues slide)
− Selling managers/auditors bullet-point friendly products
− Classification of Threat/Risk/Issue: Lack of distinction

between Category/Class/Particular—Does anyone take
formal logic classes anymore?

II. Immature Metrics
− What is *really* being exploited? (This is not what the

OWASP Top-10 or WASC taxonomy addresses.)
− *What* exploits result in real loss? (Not what the threads on

webappsec@sf are talking about.)
− No reward in securing without demonstrable risk.

Issues: How many Issues here?
Parameter Tampering

Cookie Tampering

Cross-site Scripting

SQL Injection

Script Injection

Command Injection

Encoding Attacks

Buffer Overflows

Format-string attacks

Harvesting User IDs

Brute-forcing Accounts

Path Truncation Attacks

Hidden Path Discovery

Application Directory and
File Mapping

Forcible Browsing

Source Code Disclosure

Web server vulnerability
exploitation

Beckoning to Babylon

III. Cryptographic Confusion
− encrypted “Session Tunnels” (SSL).
− encrypted cookies (so what if your cookie is encrypted?).
− encrypted “storage” (swell; you have DB password hashes).
− client-side certificates (now your clients can securely

authenticate before performing authorization attacks).
− Where are you encrypting anyway? (refer to diagram)

IV. Client Constraints & Injecting Enemas (IE)
− Stateless Clients
− Script-Happy Client Spews All
− What do we do about clients that are fundamentally broken?

Chapter III

Subverting Session &
State, and Automating
Authorization Attacks

OWASP Top-10 Vulnerabilities

1. Unvalidated Input
2. Broken Access Controls
3. Broken Account and Session Management
4. Cross-site Scripting (XSS) Flaws
5. Buffer Overflows
6. Injection Flaws
7. Improper Error Handling
8. Insecure Storage (Improper use of Cryptographic Controls)
9. Denial of Service
10. Insecure Configuration Management

Arian’s Most Common Vulnerabilities

1. XSS (Cross-site Scripting)
2. Weak or Broken Session Handling
3. User ID and/or Password Harvesting by Brute Force
4. Parameter Tampering
5. Cookie Tampering (often resulting in #2)

Several of the above fall into the “weak use of cryptography”
category, including cookies and other session tokens…

Categories, Particulars & Examples

I. State Subversion
− SRC Spoofing
− MitM (Monkey in the Middle)
− Hijacking
− Redirection (via DNS, Routing, BGP, etc.)
− Lack of State in Business Logic components
− Concurrency and ASMQ issues
− Issues with using native “session management”

components to address load-balancing issues
(see session example)

Categories, Particulars & Examples

II. Session Subversion Part I
− Session Fixation (set & forget with persistence).
− Session Castling (break & remake, proxy swap,

HTTP Response Splitting).
− Session Recording, Cloning, and Replay.
− Session “Riding”.
− Session “Double Riding”.
− XSS (Cross Site Scripting) Session Attacks.
− XST (Cross Site Tracing) Session Attacks, and why

XST will never happen (if the browser is that
broken you might as well be phishing or worse).

Categories, Particulars & Examples

II. Session Subversion Part II—Advanced XSS:

− XSS URL Parameter Exploitation.
− XSS Header Field Exploitation.
− XSS Body-based Parameter Exploitation.
− XSS and other Script Injection Breakdown:

Categories, Particulars & Examples

II. Session Subversion Part III—Taxonomy of Script
Injection Attack Vectors:

− Client Direct <--! (wireless, L2)
− Client Reflected, external Application (email)
− Client Direct or Reflected, Persistent

(XSS Proxy, Persistent Form Fields, Injected
Persistent Frames, etc.)

Categories, Particulars & Examples

II. Session Subversion Part IV—Taxonomy of Script
Injection Attack Vectors:

− App-to-Client Bounce (Spoofed Request?)
− App-to-Client Embedded (online forum, DB fields)
− App-to-Secondary App, Embedded (log readers,

CRM, “2nd Order Code Injection Attacks”)
− Which of these can trivially used to launch

authorization attacks against valid sessions?

Categories, Particulars & Examples

III. Authentication: Entity Authentication

− Authentication in Web Applications
− Dual-Factor Authentication (Bank of America)
− Client-Side Certificates
− Are you authenticating the client or the browser?
− Why is this a problem?
− Authenticating the user…

Categories, Particulars & Examples

IV. Ignored Insecurities: Authorization Attacks

− Auto-Authentication, or: Asleep at the Wheel
− Will the real “Session Riding” please stand up?
− Advanced XSS for Authorization Attacks: Hugo

Fortier’s research & Anton Rager’s XSS proxy:

http://sourceforge.net/projects/xss-proxy

http://sourceforge.net/projects/xss-proxy

Session Riding & Advanced XSS

EXAMPLES

Categories, Particulars & Examples

V. Advanced Authorization Attacks

− Direct Authorization Attacks: wireless or L2
injected localized HTTP requests (through VPN?)

− Reflected Authorization Attacks: remotely crafted
localized HTTP requests

− Embedded Authorization Attacks:
+ to presumptive strings executing URL-based

parameter actions
+ brute-forcing URL-based session tokens
+ 2nd to n-order code injection (Nokia exploits)

Advanced Authorization Attacks

EXAMPLES

Chapter IV

Self-Defending Dynamic
Session Security:

DATs, DSTs, and DFFs

The Application must defend itself

First and most important application
security principle:

The Application Must Defend Itself

Strong State Strategies

I. Strong State Management

− Multi-tier State + Authentication
− State Protection through Secure Sessions
− New session-oriented technologies
− Flash 7.0 (it’s the future of Window’s interface as

well)
− Yes, I said Flash, and with a straight face.

− Flash grows up: http://www.ena.lu/mce.cfm

http://www.ena.lu/mce.cfm

Strong Session Strategies

II. Strong Session Management

− Strong Session Affinity Tokens
− Dynamic Session Tokens (DSTs)
− Keep them out of your web logs (URL-based

tokens stored in web logs by default)
− Consider the Cookie Carefully
− Dynamic Session Rotation via DSTs: compare to

IPSEC or SSL VPNs

Enforcing Authoritative Action

III. Strong Authorization Enforcement Part I

− Dynamic Authorization Tokens (DATs)
− Dynamic Form Fields (DFFs)
− Think One Time PINs (OTPs)
− NOT the session cookie or default DOM-abused

objects
− Ditch your URL-based parameters
− NOT in the URL or your web logs

Enforcing Authoritative Action

III. Strong Authorization Enforcement Part II

− In the URL if you insist on URL-params, else
− Dynamic Form Fields for Session Token Handling
− Dynamic Authorization Tokens as a form-value
− Dynamic Form Fields stop some types of harvesting

and workflow-bypass attacks
− DATs break trivially-exploitable URL-based XSS
− DATs mitigate XST action or workflow attacks

Enforcing Authoritative Action

IV. Design by Number

1. Use DATs and DFFs to protect sensitive functions
2. Enforce DATs and DFFs at and post authentication
3. Define application function Entry-Points
4. Define application function Exit-Points
5. Enforce function workflow from Entry-Point by:

a. Validating DSTs at each workflow step
b. Requiring unique DATs for each workflow step

6. Ensure tokens are destroyed at function Exit-Point

Enforcing Authoritative Action

EXAMPLES
Defeating Advanced XSS and Authorization

Attacks with DSTs and DATs

Interlude with the Devil

Authorization
weaknesses that we
can’t do much about

today

Interlude with the Devil

− My Mother: Yes! (she clicks on anything)
− My Father: No! (he won’t even install the patch)
− My 0wn3d Windowz Boxen: Predictable File Names,

Locations & Sun’s JVM
− would this have happened if my OS had dynamic

workflow-based authorization tokens? (random
cache directories used for downloads)

− The Losing Battle? (IE)
− Belittling the Broken Browser

− Enforcing Stateful Workflow (workflow handout)
− Catholics vote for “Dynamic Authorization Tokens”

Chapter V

Spinning Security in the
Web’s Future

Spinning Security in the Web’s Future
I. Towards a new OWASP Top-10 Taxonomy

− Distinction between Category, Class, and Particular
− Distinction between Risk, Threat, and Vulnerability
− Metrics distinguishing exploitability

II. Context Criticality
− Threat Modeling
− Strategic Solutions (Focus on reusable frameworks, not

new widgets)

III. Retiring RFC’s
− Session Management RFCs from 1997?
− Isn’t it about time?
− Stop perpetuating this mess.

Spinning Security in the Web’s Future
IV. Future Shock

− Flash and Session-based technologies
− Wait until you see what we are doing with Flash…

V. DSTs, DATs, DFFs
− Use Dynamic Session Tokens
− Use Dynamic Authorization Tokens for sensitive functions
− Use Dynamic Form Fields to limit workflow bypasses
− Define Entry Points
− Define Exit Points
− Destroy all tokens at Exit and Absolute Time

Chapter VI

Q&A:
Shoot the Messenger

Additional Notes

Highest Risk Web App Vulnerabilities

1. What does your application do?
2. What sensitivity of information does your application

handle?
3. What type of functionality does your application

provide?
4. What are the business requirements your customers

demand of your application for it to exist?
5. Can you quantify the impact of a compromise?

There is no such thing as an arbitrary risk or threat in your
application, regardless of what a tool or vendor tells you.

References
OWASP http://www.owasp.org
SecureCoding http://www.securecoding.org
STRIDE/DREAD Threat Models
http://www.microsoft.com
D. Schwabe and G. Rossi, “An Object-Oriented
Approach to Web-Based Application Design,” Theory
and Practice of Object Systems (TAPOS), special issue
on the Internet, vol. 4, no. 4, 1998, pp. 207-225.
“Measuring Relative Attack Surfaces”
http://www-2.cs.cmu.edu/~wing/

http://www.owasp.org/
http://www.securecoding.org/
http://www.microsoft.com/
http://www-2.cs.cmu.edu/~wing/

References
Started with “Cross Site Request Forgeries”
http://www.securityfocus.com/archive/1/191390
“Session Fixation” by Mitja Kolsek
http://www.acrossecurity.com/papers/session_fixation.pdf
“Web App Session Strength” by Michael Schema at BH
Vegas 04 http://www.blackhat.com/presentations/bh-usa-04/bh-
us-04-shema-up.pdf (and Schema’s February 05 RSA presentation
on same explores)
“Session Riding” by Thomas Schreiber
http://www.securenet.de/papers/Session_Riding.pdf
“Host Naming & URL Conventions” by Gunter Ollman
http://www.ngssoftware.com
Unpublished work by myself and Hugo Fortier on session and
authorization attacks via XSS, automation, and session fixation to
be released this year (2005) on the OWASP portal.

http://www.securityfocus.com/archive/1/191390
http://www.acrossecurity.com/papers/session_fixation.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-shema-up.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-shema-up.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-shema-up.pdf
http://www.ngssoftware.com/

Arian J. Evans
Senior Security Engineer

FishNet Security
816.701.2045

arian.evans@fishnetsecurity.com

OWASP Chapter Leader, Kansas City

mailto:arian.evans@fishnetsecurity.com

	Black Hat Europe 2005
	Black Hat Europe 2005
	Who
	What this subject is about:
	Limited Background
	Why do you care?
	The Application must defend itself
	Presentation Overview
	Chapter I
	Lightweight and Stateless by Design
	Chapter II
	Security Vendor Marketing Hype
	Issues: How many Issues here?
	Beckoning to Babylon
	Chapter III
	OWASP Top-10 Vulnerabilities
	Arian’s Most Common Vulnerabilities
	Categories, Particulars & Examples
	Categories, Particulars & Examples
	Categories, Particulars & Examples
	Categories, Particulars & Examples
	Categories, Particulars & Examples
	Categories, Particulars & Examples
	Categories, Particulars & Examples
	Session Riding & Advanced XSS
	Categories, Particulars & Examples
	Advanced Authorization Attacks
	Chapter IV
	The Application must defend itself
	Strong State Strategies
	Strong Session Strategies
	Enforcing Authoritative Action
	Enforcing Authoritative Action
	Enforcing Authoritative Action
	Enforcing Authoritative Action
	Interlude with the Devil
	Interlude with the Devil
	Chapter V
	Spinning Security in the Web’s Future
	Spinning Security in the Web’s Future
	Chapter VI
	Additional Notes
	Highest Risk Web App Vulnerabilities
	References
	References

