
Dynamic Detection and
Prevention of Race Conditions

in File Accesses

Eugene Tsyrklevich

eugene@securityarchitects.com

Outline

 What are race conditions?
 How can we prevent them?
 Implementation description
 Demonstration

What are Race Conditions?

 File race conditions occur when file
operations are not carried out atomically

 An operation/transaction is carried out
atomically when it executes without
being interrupted or does not execute at
all

Race Condition Example #1

 Victim Attacker

access(file, W_OK)
unlink(file)
link(file, /etc/passwd)

 open(file, O_TRUNC)

T
i

m
e

Race Condition Example #2

 Victim Attacker

stat(file) = ENOENT

link(file, /etc/passwd)

 open(file, O_TRUNC)

T
i

m
e

Other Race Conditions
 Other types of file race conditions:

 Directory operations (GNU fileutils)
 Setuid shell scripts (Early Unices)
 Temporary files (all Unix programs that use

temporary files? :-)

Why are RC dangerous?
 File race conditions are

 Still constantly being discovered
 Hard to find

 Race conditions can be used for
 Privilege elevation
 Denial of service

Related Work
 Various static analysis tools
 RaceGuard (Crispin Cowan, et al)

 Addresses /tmp stat races only
 Openwall Project (Solar Designer)

 Limits users from following untrusted
symbolic links created in certain directories

 Limits users from creating hard links to files
they don't have read and write access to

The Problem

Programmers assume that sequences
of file operations execute in isolation

Transactions
 Model filesystem activity in terms of

transactions
 access() + open() operation is a

pseudo-transaction
 Race conditions violate transaction

ACID (Atomicity, Consistency, Isolation,
and Durability) properties

Transactions (2)
 Race conditions in file accesses

primarily violate the isolation property
 Enforcing isolation in pseudo-

transactions requires
 detection
 prevention of race conditions

Detecting Race Conditions
 Mediate all file operations

 Look for explicit attacks
(Default allow policy)

Or
 Look for normal file activity

(Default deny policy)

Default Allow Policy
 Look for explicit attack patterns

REMOVE=UNLINK | RMDIR | RENAME
DENY(ACCESS, REMOVE)
DENY(CHDIR, REMOVE)
DENY(EXEC, REMOVE)

Default Deny Policy
 Look for normal file activity

OPEN_RW = OPEN_READ | OPEN_WRITE
RENAME = RENAME_TO | RENAME_FROM

PERMIT(OPEN_RW, OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC |
UNLINK | READLINK | CHMOD | CHOWN | RENAME)
PERMIT(OPEN_CREAT, OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC |
RENAME_FROM)
PERMIT(ACCESS, OPEN_RW | ACCESS | UTIMES | CHDIR |EXEC)
PERMIT(EXEC, OPEN_READ | EXEC)
PERMIT(CHDIR, OPEN_READ | CHDIR | ACCESS | READLINK)
PERMIT(RENAME_FROM, OPEN_RW | ACCESS | UNLINK | RENAME_FROM)
PERMIT(RENAME_TO, OPEN_RW)
PERMIT(CHMOD | CHOWN, OPEN_RW | ACCESS | CHMOD | CHOWN)
PERMIT(UTIMES, OPEN_RW | ACCESS | CHMOD | CHOWN)
PERMIT(READLINK, READLINK)

Preventing Race Conditions
 Transaction rollback
 User confirmation
 Locking out processes
 Killing processes
 Suspending processes

Transaction Rollback

 Pros
 Leaves system in a consistent state

 Cons
 Requires transaction support which few

operating systems provide

User prompting

 Pros
 Less intrusive

 Cons
 Difficult usability problem
 Not suitable for servers

Locking out processes

 Pros
 Guarantees race condition free

environment

 Cons
 Possible deadlocks
 Poor performance

Killing processes

 Pros
 Prevents any possible abuse

 Cons
 Subject to denial-of-service attacks

Suspending processes

 Pros
 The worst possible outcome (in case of a

false positive) is a process delay

 Cons
 Difficult to decide when to wake up a

sleeping process

Suspending Processes (2)
 Victim Attacker

access(file)
(starts new pseudo
transaction X) unlink(file)

link(file, /etc/passwd)
(interferes with
transaction X)
SUSPENDopen(file, O_TRUNC)

(ends transaction X,
starts transaction Y)

T
i

m
e

(wake up and
execute unlink())

Implementation
 OpenBSD kernel module
 Mediates filesystem calls + fork, exec

and exit
 Records all file operations in

a global hash table

Implementation (2)

 Load average is used to calculate
the timeout for
 suspending processes
 purging old hash entries

Implementation Example

T
i

m
e

access(file)

 Process Hash Table

pid: 1713; inode: 1281
operation: ACCESS

fork() = 791 pid: 791; inode: 1281
operation: ACCESS

unlink(file, inode 1281)
link(file, /etc/passwd)

+

SUSPEND

Microbenchmarks

03123Total CPU
Overhead (%)

86.213.385.69Race Protection
Kernel, ms

86.173.282.55Stock Kernel, ms
forkstatopenSystem Call

Compile Benchmark

1602Total CPU
Overhead (%)

43363436Race Protection
Kernel, sec

37363427Stock Kernel, sec

System
Time

User
Time

Real
Time

Results
 Used on several machines over a

period of three months
 No noticeable system overhead
 No false positives or false negatives

after the initial policy adjustment (i.e.
system training)

Demonstration
 Live Demo

Thank You
Source code is available at
www.secarch.com/people/eugene/

eugene@securityarchitects.com

