Introduction to Mobile Device Insecurity

Black Hat Europe 2004 Briefings
Thursday, May 20, 11:30am - 12:45pm

Joe Grand
Grand Idea Studio, Inc.
joe@grandideastudio.com
Goals

- Understand classes of problems
- Learn security risks and protection methods
- Education by demonstration
By The Numbers...

- Palm OS: 41.8% of handheld market, 30 million units sold to date
- IDC: 533.4 million mobile phones worldwide in 2003
- IDC: 30 million smartphones (cell + PDA) to ship in 2004
- VDC: 75 million Java-enabled devices to ship in 2004
The Major Players: Palm OS

- Ex.: Palm, Handspring, Sony, IBM, Kyocera, Samsung, Qualcomm, Franklin Covey, TRG, Symbol, HandEra
The Major Players: Windows CE / Pocket PC

- Ex.: Microsoft, HP, Compaq, Sony, Cingular, Gateway, JVC, Dell, Fujitsu, Toshiba, Panasonic, Symbol
The Major Players: Symbian OS

- Ex.: Nokia, Psion, Sony Ericsson, Motorola, Siemens, FOMA, Panasonic
Common Uses

- **Personal**
 - Phone numbers, memos, to do lists, diaries

- **Security/Network Admin**
 - IP addresses, network maps, usernames & passwords, authentication tokens, one-time-password generation

- **Medical**
 - Patient information, medications, treatments

- **Government/Military**
 - Schedules, sensitive/secret information
Common Uses 2

- Wireless
 - WWW, E-mail, Instant Messaging, e-commerce
Current Risks

- Mixing business with pleasure
- Admin, users not aware of the existing security problems
- Most devices have no security framework
 - No access control or data/memory protection
 - Hardware can be directly accessed by the user through software
 - No physical secure hardware design methods
Current Risks 2

- Data is stored as plaintext in accessible memory
- Being employed in security-related apps
 - One-time-passwords & authentication tokens
 - Storage of private/confidential information
 - E-commerce, wireless payment
- Cannot have secure apps on top of an insecure platform
 - Third-party apps are simply a road-block for an attacker, not 100% protection
Current Risks 3

● "Always on" technologies
 - Ex.: Network, WiFi, Bluetooth, IR
 - Open to the outside world...all the time

● External memory cards
 - Supported on most all new mobile devices
 - Easy to steal
 - Some devices load apps into memory upon insertion

● Existing security mechanisms are weak and/or flawed
The Good News

- New devices seem to be taking security more seriously
- Some vendors used to get defensive...now they are actually incorporating changes
- Security features designed into Palm OS 6.0
- Windows Mobile 2003, Linux, Java devices provide abstraction of user v. OS v. hardware
- But...device should still be fully tested and analyzed before deployment
Access to Data

- Double-edged sword
 - Could be used for good or evil
- System Password Retrieval
- Debug Modes and Sync Interfaces
- Physical Access
System Password Retrieval

- Power-on and data protection using a password
- Often weak obfuscation, not encryption
- Password re-use
 - Human nature - easier to remember a single password
 - Can lead to attacks on other computers, ATM, voicemail
System Password Retrieval: Palm OS < 4.0

- Max. 32 characters ASCII
- Reversible obfuscation method (XOR against constant block)
- Can retrieve password/hash [1]:
 - During HotSync operation (IR, Serial, Network)
 - “Unsaved Preferences” database
 - On host PC: \Palm\users.dat
 - On host Mac: Palm:Users:Palm Users
 - On Palm: ppwdump, NotSync
System Password Retrieval 2: Palm OS < 4.0

- Demo: Retrieve and decode password using ppwdump
- Recommendations:
 - Upgrade to device running newer version of Palm OS

```
ppwdump Joe
Password: sekrit!@
```
System Password Retrieval: Palm OS >= 4.0

- Max. 32 characters ASCII
- Encoded block is 128-bit MD5 hash
- One-way hash (not reversible)
- Dictionary attack using common words
 - Take advantage of short passwords
System Password Retrieval: Windows CE / Pocket PC

- ActiveSync used for all communication between PC and device
 - Available through serial, USB, IR, TCP/IP, Bluetooth
 - No confidentiality of transferred data
- Reversible obfuscation method (XOR against constant)
- Can retrieve password/hash [2]:
 - In host PC registry: HKEY_CURRENT_USER\Software\Microsoft\Windows Ce Services\Partners
System Password Retrieval: Windows CE / Pocket PC 2

- On some devices, 4-digit PIN used for authentication can be brute-forced manually or programmatically [3]
- Pocket PC registry accessible by any user on the device
 - Ex.: PHM Registry Editor, PPTools
 - Ex.: PPP network passwords stored in plaintext
System Password Retrieval: Windows CE / Pocket PC 3

- Can change Control Panel Applet (cpl) entry in registry to load another app on power-up
 - Microsoft "Let Me In" example, Q314989, demonstrates how to redirect password screen
System Password Retrieval: Mobile Phones

- Password is usually limited to 4 digits
 - Ex: Last 4 digits of phone number, pattern (0000, 1111, 1234, etc.)
 - Users often use same PIN on phone as they do for voicemail and ATMs

- Most, if not all, have diagnostic/administration menu
 - Some accessible through keypad, others with hardware cable
 - Ex.: Nokia DCT-3 and DCT-4 series phones
Palm Backdoor Debug Mode

- Exists for debugging during app development
- Can use to bypass “System Lockout” functionality [4]
- Can install/delete/run apps, view raw memory, hard reset, export databases
- Third-party security apps at risk
 - Obtain plaintext components from memory, install “keystroke monitor” to retrieve passwords
Palm Backdoor Debug Mode 2

- Demo: Display databases and memory
- Demo: pdd to retrieve exact device RAM image
- Recommendations:
 - Upgrade to device running newer version of Palm OS
 - Capability removed in OS >= 5.0
 - Physically prevent access to HotSync port
 - Hardware lock (Ex.: Kensington, Targus, Belkin)
 - Plastic glued into place, permanently disabling port
 - Cutting specific traces on circuit board
Visual Studio .Net Debugger

- Exists for debugging during app development
 - Provides remote debugging and device access to Windows CE / Pocket PC
 - Developer's documentation publicly accessible
 - Uses ActiveSync protocol
- Can access Pocket PC registry, install/delete/run apps, export databases
Pocket PC Phone Edition and XDA Bootloader

- Allows access to a device without passing any access controls
- Provides a detailed debugging and diagnostics interface through sync port
- Special mode to recognize diagnostic external memory cards and can execute code directly from them
Pocket PC Phone Edition and XDA Bootloader 2

Source: "The Phone in the PDA," Job de Haas, Black Hat Briefings Amsterdam 2003
Psion Link Protocol (PLP)

- Proprietary protocol between device and PC
- Partially reverse-engineered and documented
- Full access to data on all drives (internal and external)
- Can be accessed even if system lock-out is enabled
- Ex.: plp-tools, PDA Seizure (soon)
Physical Access to Data

- Physical attack often more difficult than software attack, but still possible without detection
- Secure hardware design principals not employed
 - Possible to open device and read memory
 - Access data using manufacturing test interfaces (e.g., JTAG)
- Recommendations:
 - Be aware of physical location at all times
 - Store critical data on external memory card and remove when not in use
Three stages:

- Infection
- Storage
- Actions

Anti-virus tools exist

- Do not protect from many of weaknesses (yet)
- Install anyway to add another "layer" of security
- McAfee: By 2005, malicious mobile phone attack will have potential to infect 33% of all users within 3 days
Infection

- Application installation procedure
- Desktop conduits
- External memory cards
- Network connectivity
- Wireless communications
- Telephony
Infection: Application Installation

- Installation procedure for Palm, Pocket PC, and BlackBerry all very simple and similar
 - Palm: Apps to be loaded are copied into /Palm/<user>/Install
 - Pocket PC: Apps to be loaded are copied into directory listed in HKLM\Software\Microsoft\Windows CE Services\InstalledDir

- No confirmation or authentication exists

- Recommendations:
 - Manually check installation directory before synchronization
Infection: Desktop Conduits

- Enable transfer of data between device and specific desktop application
- Standard conduits exist
 - Palm: HotSync
 - Pocket PC: ActiveSync
 - Psion/EPOC16/EPOC32: PsiWin, plp-tools
- Route data to Personal Information Manager (PIM) or third-party application
 - Microsoft Outlook/Exchange/Office, Netscape, Lotus Notes, etc.
Infection: Desktop Conduits 2

- Possible for cross-architecture transfer
 - Mixing business with pleasure
 - Ex.: Windows PC to/from Pocket PC

- Could exploit a known security problem in the destination desktop app

- Recommendations:
 - Only synchronize your device with a trusted desktop
 - Use anti-virus software on both platforms to scan incoming data before passing it to destination app
Infection: External Memory Cards

- Most all devices have support for external memory cards
 - Ex.: SD, CompactFlash, MemoryStick, SmartMedia
- Some devices will auto-run applications directly from memory card upon insertion
- Pocket PC: AutoRun
 - Will bypass system password protection
 - Copious amounts of documentation on MSDN
- Palm (Sony): MemoryStick Autorun
Devices with TCP/IP or other network functionality provide additional attack vectors
- Ex.: Remote attacks against device
- Ex.: Attacks against network from compromised device

Pocket PC: ActiveSync listens on Port 5679 for remote connection
- Can launch Denial of Service by continuously establishing and closing connection
Infection: Network Connectivity 2

 Recommendations:
 - Don't use ActiveSync on an unencrypted/untrusted network
 - Disable all unneeded network connections
 o Ex.: ftpd, telnetd
Infection: Wireless, IR/IrDA

- Point-to-point, close quarters
- No native authentication
- Viable conduit for propagation with collusion on the receiving end
- Ex: Trick the recipient into accepting a malicious program
- Ex: Beam malicious code in the form of a business card object
Infection: Wireless, IR/IrDA 2

- Recommendations:
 - Disable IR port until needed
 - Common sense: Do you trust the other party?
 - Extreme: Do not accept any beamed connections
 - Extreme: Put electrical over the IR port to prevent rogue connections
Infection: Wireless, RF

- Suitable for longer-distance communications
- Many different protocols, each with their own security problems
 - Bluetooth, WiFi/802.11b, HomeRF, Mobitex, GPRS
- Ex: Sending malicious e-mail or attachment to the device
 - Buffer overflow or SMS message to intentionally crash device
Infection: Wireless, RF 2

- Recommendations:
 - Disable wireless functionality until needed
 - Disable all server applications (e.g., web, FTP)
 - Add passwords to Bluetooth services if possible
Infection: Telephony (SMS/GPRS)

- **SMS Attacks**
 - Broken UDH caused crash in some Nokia phones
 - Spoofed SMS messages: Originating Address field can be arbitrarily set to anything
 - Ex.: Virus propagated via SMS by resending itself to all phone numbers in the device's address book

- **Pocket PC: GPRS connections do not require user confirmation**
 - Ex.: Connection can be established programmatically by Trojan horse
Storage and Payload Hiding

- User data areas
- Flash memory
Storage: User Data Areas

- User data and applications stored in RAM
- Malicious code would save program or payload into a standard area
 - Palm: Database
 - Pocket PC: Application Shared Space
- Possible on many portable devices due to lack of protection/access control of data
 - Palm OS 5 has code signing support to ensure that malicious programs cannot tamper with data on device
Storage: Flash Memory

- Flash ROM increasingly being used for OS storage
 - Current devices vulnerable due to no protection or secure hardware mechanisms
- Unused space likely for malicious app storage
 - Anti-virus software does not currently detect access
 - Palm: 128-2424kB free
 - Pocket PC: Many MB free
- Legitimate third-party applications exist to backup data into free areas of Flash
 - Malicious code could use same functionality
Actions

- Flash memory modification
- Register manipulation
- Further attacks or virus propagation
Actions: Flash Memory Modification

- Any data not stored in protected Flash ROM areas is subject to erasure or modification
- Ex: Rewriting OS with Trojan, modifying or destroying critical system data
- Devices provide "boot loader" for OS and Flash upgrades
 - Ex.: XDA, Pocket PC Phone
- Recommendations:
 - Use an older device that stores OS in non-rewritable memory (ROM)
Actions: Register Manipulation

- Lack of layer control allows user apps to directly access hardware via memory mapping
- How to detect with anti-virus software?
 - Hard to distinguish between legitimate and malicious access

<table>
<thead>
<tr>
<th>Register(s)</th>
<th>Potential Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase-Locked Loop (PLL) and Power Control</td>
<td>System can be halted</td>
</tr>
<tr>
<td>Chip-Select and Addressing</td>
<td>Corrupt memory maps making code and data fetches impossible</td>
</tr>
<tr>
<td>LCD Control Module</td>
<td>Affect LCD functionality</td>
</tr>
</tbody>
</table>
Actions: Further Attacks & Virus Propagation

- Platform could be used as a launch pad for additional attacks or malicious code propagation
- Ex.: Attacker to use device to mask steps
- Ex.: Virus propagated via SMS by resending itself to all phone numbers in the device's address book
General Recommendations

- Use power-on password and encryption to protect data
 - Adds an additional layer of “security”
 - Many third-party solutions available
 - Ex.: Certicom movianCrypt for Palm and Pocket PC
- Monitor synchronization logs
- Keep up to patch level on all desktop and handheld apps (e.g. Palm Desktop, MS ActiveSync, etc.)
General Recommendations 2

- Make regular backups of mobile device data
- Store critical data on removable memory and keep with you at all times
- Use VPNs on mobile device if possible
- Be aware of:
 - Physical location
 - What critical information you are storing
 - What apps are being installed onto the device
Conclusions

● Understand the risks and implement recommendations

● Hard, if not impossible, to detect tampering and data theft

● Most products not designed for security
 – Vendors starting to take small steps
 – Understand your threat model
 – Analyze before implementation
Conclusions 2

- Simplistic and common classes of problems
 - No access control
 - Weak user authentication
 - Many avenues for malicious code

- Malicious code propagation is a real threat, though not yet fully realized
 - As mobile device use becomes more widespread, risks become amplified
References

Additional Reading: Palm OS

- PalmSource, Palm OS Web Page, www.palmsource.com
- HandEra, JackFlash, www.hantera.com/Products/JackFlash.aspx
Additional Reading: Pocket PC

- Pocket PC Developer Network, www.pocketpcdn.com
- XDA Developers, www.xda-developers.com
- Datalight, FlashFX, www.datalight.com
Additional Reading: Forensics

Additional Reading: Wireless

Additional Reading: Anti-Virus & Encryption

- F-Secure, Handheld Solutions Web Page, www.f-secure.com/wireless
Thanks!

Grand Idea Studio, Inc.
http://www.grandideastudio.com
joe@grandideastudio.com