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What is ARM?

• Reduced Instruction Set Computer RISC.
• Designs and ARM Architecture licensed by

ARM Ltd.
• Produced by: Intel, Philips, TI, Sharp, etc.

etc.
• Popular cores: ARM7TDMI.
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ARM cores and archs

• Architectures:
– v4, v4T, v5TE, v6.
– Specify instruction sets + extensions.

• Cores:
– Eg. ARM7TDMI, ARM940T, ARM966E-S, ARM1022E.
– Specify licensed IP cores.

• Families:
– ARM7, ARM9, ARM9E, ARM10E, ARM11.
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ARM core examples

• Nokia DCT-3 phones
– ARM7TDMI + TMS320C54x

• HTC PDA with GSM
– Intel Xscale
– ARM7TDMI + TMS320C54x or
– ARM9TDMI + TMS320C55x (OMAP)
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What is running on ARM?

• Windows CE / PocketPC
• Symbian / EPOC
• Nucleus
• PalmOS
• Proprietary: older Nokia etc.
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ARM Architecture

• ARM mode (32 bit).
• THUMB mode (16 bit).
• 16 Registers + Flags.
• Basic instruction model for most

instructions:
– Can choose to set flags.
– Can choose to use conditions.
– Can use the different addressing modes.
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ARM adressing modes
MOV     R3, #0xA0
LDR     R4, [R0]
LDRH    R11, [R4,R3]
STRB    R11, [R0,#1]
ADD     R0, R4, #2
MOV     R3, R1,LSL#16
ADD     R0, R2, R3,LSL#8
STMFD   SP!, {R4-R7,R11,LR}

LDR     R3, =DOC_func1
LDR     R6, off_90052208
MOV     R1, R0
MOV     PC, R3

MOVS    R3, R2
MOVEQ   R0, #1
MOVNE   R0, #0
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ARM / DSP Combo

• TMS320C54x is popular.
• Has internal RAM / ROM.
• Communicates through Dual Port RAM and

signal lines (GPIO).
• Security can sometimes be compromised

by running code in Dual Port RAM: reading
out ROM and RAM.
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DSP/ARM Block Diagram
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Example reading out DSP

• Nokia DCT-3 phones allow flashing with
custom ARM code.

• From ARM write DSP code at start address
in dual port RAM.

• Reboot DSP.
• Read DATA and PROGRAM areas.



Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Overview

What is ARM?
• Reversing and Decompiling.
• Idioms and examples.
• Conclusions



Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Reversing: reaching the code

• Reading memory from a program.
• Using the bootloader / monitor.
• Unpacking upgrades.
• Dumping memory directly through

hardware means.
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Reversing issues

• Trying to understand the software.
• Device software is getting big: 4MB for a

GSM phone to 32MB for WinCE.
• Production code lacks symbols.
• Most production code still contains a lot of

debug features.
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Hardware assisted RE

• JTAG Boundary Scan protocol.
• Still available in most consumer devices.
• Can be hard to trace out.
• Is supported with in-circuit debuggers and

tracers.
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Locating JTAG, cooking the PDA

http://www.xda-developers.com/jtag/
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Trace the board
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JTAG trace: connect and go
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Using JTAG

• Reading memory on the fly.
• Modifiying memory, but also inputs!
• In circuit ‘debugging’ of code.
• Proprietary extensions per manufacturer.
• Recognized as a security problem:

– Test pads sometimes get removed.
– Fuses may be used to destroy logic.
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Tools

• Disassemblers
– IDA Pro Advanced (for DSP)
– Disarm
– GNU

• Debuggers
– Microsoft Embedded Visual Tools
– RealView and ICE hardware debugging
– GDB
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Tools 2

• Emulators
– ARMulator from ARM Ltd
– SkyEye http://www.skeyeye.org
– Nokia 5110 simulator WinArm

• Decompilers
– Desquirr
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Decompilation

• Generally based on work by Cristina
Cifuentes.

• Signatures for subroutine / arg
identification.

• Dataflow analysis.
• Data type analysis.
• Execution flow analysis.
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Desquirr

• Plugin for IDA, developed by David
Eriksson for his Master thesis.

• Does data flow analysis.
• Adapted for ARM instructions.
• Added ARM compiler idioms.
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Idioms

• Compiler specific solutions and
optimizations for common code.

• Can result in large simplifications of
assembler.

• Can provide additional information to aid
further understanding code.

• Used often with RISC instructions.
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Idioms: function calls
LDR     R3, =DOC_func1
MOV     R1, R0
LDR     R3, [R3]
MOV     R2, R4
MOV     R0, R5
MOV     LR, PC
MOV     PC, R3
-------------------
MOV     R0, #0
LDMFD   SP!, {R4,R5,PC}

STMFD   SP!, {R4-R11,LR}
SUB     SP, SP, #0x28
MOV     R5, R2
MOV     R2, #0
MOV     R4, R3
STR     R2, [SP,#0x4C+var_40]
MOV     R7, R0
LDR     R0, [SP,#0x4C+arg_0]
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Idiom: type casting
THUMB:
MOV     R0, #0x20
ORR     R0, R7
LSL     R0, R0, #0x18
LSR     R7, R0, #0x18

ARM:
ADD     R1, R2, #1
MOV     R3, R1,LSL#16
MOV     R2, R3,LSR#16
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Example: XDA lock protection

• Version 1: read lock code directly from
memory through AT command.

• Look for lock related code.
• Look for device specific AT extensions.
• Result: lock is plain text readable by an AT

command: AT%UREG?3FE00C,4
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read_UREG: @ DATA XREF: ROM:001AFD04
PUSH {R4,LR}
ADD R4, R1, #0
LDR R0, [R4]
LDR R1, =unk_3FE000
CMP R0, R1
BCC exit0
LDR R1, =unk_3FE007
CMP R0, R1
BHI exit0
LDR R1, [R4,#8]
ADD R2, R1, R0
LDR R3, =unk_3FE000
CMP R2, R3
BCC exit0
LDR R3, =unk_3FE007
CMP R2, R3
BLS ok

exit0: @ CODE XREF: read UREG+A
MOV R0, #0
POP {R4,PC}

ok: @ CODE XREF: read_UREG+20
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obfuscate1: @ CODE XREF: do_SIDLCK2+3E�p
MOV R1, #2
ROR R0, R1
LSL R1, R0, #0x18
LSR R1, R1, #0x18
LSR R2, R0, #0x10
LSL R2, R2, #0x18
LSR R2, R2, #0x18
LSL R2, R2, #8
ORR R1, R2
LSL R2, R1, #8
LSR R1, R0, #0x18
LSL R1, R1, #0x18
LSR R1, R1, #0x18
ORR R1, R2
LSL R1, R1, #8
LSR R0, R0, #8
LSL R0, R0, #0x18
LSR R0, R0, #0x18
ORR R0, R1
MOV R1, #0x1D
ROR R0, R1
BX LR
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XDA lock protection 2

• Version 2: Blocks AT command and
obfuscates lock.

• The AT%UREG address is blocked, but
does not take ‘roll-over’ into account:
AT%UREG?3FE004,FFFFFFFF

• Obfuscate is a simply reversable process.
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From obfuscate2
...
LSL R2, R0, #0x1C        ; R2 = 0xC0000000
LSR R2, R2, #0x1C        ; R2 = 0x0000000C
LSL R2, R2, #0x18        ; R2 = 0x0C000000
ORR R2, R3        ; R2 = 0x0C0DBA0A
STR R2, [R1,#4]        ; Save the result
MOV R2, #0x1D
ROR R0, R2        ; assume R0 = 0x12345678
LDR R2, =0x7D0039F
STR R2, [R1]
LDR R2, =0xE0A060
STR R2, [R1,#4]        ; Why throw away the result???
LSR R2, R0, #4        ; R2 = 0x01234567
LSL R5, R0, #4        ; R5 = 0x23456780
MOV R4, #0xF0
AND R4, R5        ; R4 = 0x00000080
LSL R3, R2, #0x1C        ; R3 = 0x70000000
LSR R6, R3, #0x1C        ; R6 = 0x00000007
LDR R3, [R1]
ORR R6, R3
...
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Usage:

 rbmc [FileName [StartAddr [Len]]]

Read back the memory content from the specified address to the host
and save the data to specified file name.
FileName : Full file path for save data of
memory(default=c:\temp\Mem.nb).
StartAddr : Start address of memory(default(hex)=A0000000).
Len : How many bytes will be read. And if not given value, it will be
Total ROM size on board - ((StartAddress & 0x0FFFFFFF) - (ROM base
address(0) & 0x0FFFFFFF)).

rchecksum 00000000 00000000
rwdata 00040000 00000000
rerase 00040000 00000000
rrbmc 1.nb 00000000 00000000
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XDA II lock protection 1

• Version 3: Uses new obfuscate and blocks
AT command, but does allow bootloader
access.

• Look for new bootloader commands:
rrbmc test, 0x3fe302, 8

• Reverse obfuscation.
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doSECURITY:
...
ADD R0, SP, #0x70
ADD R1, SP, #0x60
LDMIA R1!, {R2,R3}
STMIA R0!, {R2,R3}
ADD R0, SP, #0x70
LDR R1, =key1
BL DESdecrypt
ADD R0, SP, #0x70
ADD R1, SP, #0x68
MOV R2, #8
BL memcmp
CMP R0, #0
BNE notkey1
LDR R5, =valLOCKTIME
MOV R0, #0
STRB R0, [R5]
LDR R0, =isSetAllowed
MOV R1, #1
STRB R1, [R0]
MOV R4, #0xFF
B printvalue

key1            DCB "%Ag2gWp",0x24
key2            DCB "5(EvO^9,"
key3            DCB "rG*344@T"
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obfuscate2:

...
ORR R2, R3
ORR R4, R2
LSR R0, R0, #8
LSL R0, R0, #8
LSR R0, R0, #0x1C
LSL R0, R0, #0x14
ORR R0, R4
STR R0, [R1,#4]
POP {R4-R6,PC}

obfuscate3:

...
ORR R2, R3
ORR R1, R2
LSR R0, R0, #8
LSL R0, R0, #8
LSR R0, R0, #0x1C
LSL R0, R0, #0x14
ORR R0, R1
STR R0, [R4,#4]
MOV R0, R12
CMP R0, #1
BNE exit
BL encodekey
ADD R0, R4, #0
LDR R1, =lockkey
BL DES-decrypt

exit:
ADD SP, SP, #4
POP {R4-R7,PC}
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XDA II lock protection 2

• Version 4: blocks bootloader reading locks
and improves obfuscation.

• Look at bootloader block.
• Look at obfuscate.
• Relook at locking code.
• Reverse AT%SECURITY code.
• Turn on GOD mode.
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XDA II lock protection

• Version X?
• Example: Use MD5 hash with the IMEI and

a long code.
• Prevent all write and read access to the

lock area.
• Make sure all developers know what they

are doing?
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Conclusions

• ARM is a much used processor and very
common in a lot of consumer devices.

• The simple RISC instruction set:
– can lead to hard to follow, bitswapping code.
– lends itself to decompilation.

• Gaining control over the lowlevel ARM
code can lead to interesting possibilities.
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Future outlook

• Improvements in decompilation will ease
Reverse Engineering.

• Embedded systems still increase the
unjustified feeling it will be ‘hard’ to break
in to them.

• More and more developing for embedded
systems becomes ‘easy’.
⇒ increase bad apps, increase attackers.
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Resources

• PocketPC reversing:
– http://www.ka0s.net
– http://xda-developers.com

• Symbian reversing
– http://phantasm.50megs.com

• Nokia reversing:
– http://www.blacksphere.tk
– http://nokiafree.org
– http://www.mados-technology.com/mados/
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Resources 2

• Decompilation
– http://www.program-transformation.org/
– http://www.itee.uq.edu.au/~cristina/dcc.html
– http://boomerang.sourceforge.net/
– http://desquirr.sourceforge.net/


