
Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Overview

• What is ARM?
• Reversing and Decompiling.
• Idioms and examples.
• Conclusions.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

What is ARM?

• Reduced Instruction Set Computer RISC.
• Designs and ARM Architecture licensed by

ARM Ltd.
• Produced by: Intel, Philips, TI, Sharp, etc.

etc.
• Popular cores: ARM7TDMI.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

ARM cores and archs

• Architectures:
– v4, v4T, v5TE, v6.
– Specify instruction sets + extensions.

• Cores:
– Eg. ARM7TDMI, ARM940T, ARM966E-S, ARM1022E.
– Specify licensed IP cores.

• Families:
– ARM7, ARM9, ARM9E, ARM10E, ARM11.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

ARM core examples

• Nokia DCT-3 phones
– ARM7TDMI + TMS320C54x

• HTC PDA with GSM
– Intel Xscale
– ARM7TDMI + TMS320C54x or
– ARM9TDMI + TMS320C55x (OMAP)

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

What is running on ARM?

• Windows CE / PocketPC
• Symbian / EPOC
• Nucleus
• PalmOS
• Proprietary: older Nokia etc.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

ARM Architecture

• ARM mode (32 bit).
• THUMB mode (16 bit).
• 16 Registers + Flags.
• Basic instruction model for most

instructions:
– Can choose to set flags.
– Can choose to use conditions.
– Can use the different addressing modes.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

ARM adressing modes
MOV R3, #0xA0
LDR R4, [R0]
LDRH R11, [R4,R3]
STRB R11, [R0,#1]
ADD R0, R4, #2
MOV R3, R1,LSL#16
ADD R0, R2, R3,LSL#8
STMFD SP!, {R4-R7,R11,LR}

LDR R3, =DOC_func1
LDR R6, off_90052208
MOV R1, R0
MOV PC, R3

MOVS R3, R2
MOVEQ R0, #1
MOVNE R0, #0

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

ARM / DSP Combo

• TMS320C54x is popular.
• Has internal RAM / ROM.
• Communicates through Dual Port RAM and

signal lines (GPIO).
• Security can sometimes be compromised

by running code in Dual Port RAM: reading
out ROM and RAM.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

DSP/ARM Block Diagram

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Example reading out DSP

• Nokia DCT-3 phones allow flashing with
custom ARM code.

• From ARM write DSP code at start address
in dual port RAM.

• Reboot DSP.
• Read DATA and PROGRAM areas.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Overview

What is ARM?
• Reversing and Decompiling.
• Idioms and examples.
• Conclusions

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Reversing: reaching the code

• Reading memory from a program.
• Using the bootloader / monitor.
• Unpacking upgrades.
• Dumping memory directly through

hardware means.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Reversing issues

• Trying to understand the software.
• Device software is getting big: 4MB for a

GSM phone to 32MB for WinCE.
• Production code lacks symbols.
• Most production code still contains a lot of

debug features.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Hardware assisted RE

• JTAG Boundary Scan protocol.
• Still available in most consumer devices.
• Can be hard to trace out.
• Is supported with in-circuit debuggers and

tracers.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Locating JTAG, cooking the PDA

http://www.xda-developers.com/jtag/

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Trace the board

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

JTAG trace: connect and go

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Using JTAG

• Reading memory on the fly.
• Modifiying memory, but also inputs!
• In circuit ‘debugging’ of code.
• Proprietary extensions per manufacturer.
• Recognized as a security problem:

– Test pads sometimes get removed.
– Fuses may be used to destroy logic.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Tools

• Disassemblers
– IDA Pro Advanced (for DSP)
– Disarm
– GNU

• Debuggers
– Microsoft Embedded Visual Tools
– RealView and ICE hardware debugging
– GDB

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Tools 2

• Emulators
– ARMulator from ARM Ltd
– SkyEye http://www.skeyeye.org
– Nokia 5110 simulator WinArm

• Decompilers
– Desquirr

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Decompilation

• Generally based on work by Cristina
Cifuentes.

• Signatures for subroutine / arg
identification.

• Dataflow analysis.
• Data type analysis.
• Execution flow analysis.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Desquirr

• Plugin for IDA, developed by David
Eriksson for his Master thesis.

• Does data flow analysis.
• Adapted for ARM instructions.
• Added ARM compiler idioms.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Overview

What is ARM?
Reversing and Decompiling.
• Idioms and examples.
• Conclusions

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Idioms

• Compiler specific solutions and
optimizations for common code.

• Can result in large simplifications of
assembler.

• Can provide additional information to aid
further understanding code.

• Used often with RISC instructions.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Idioms: function calls
LDR R3, =DOC_func1
MOV R1, R0
LDR R3, [R3]
MOV R2, R4
MOV R0, R5
MOV LR, PC
MOV PC, R3

MOV R0, #0
LDMFD SP!, {R4,R5,PC}

STMFD SP!, {R4-R11,LR}
SUB SP, SP, #0x28
MOV R5, R2
MOV R2, #0
MOV R4, R3
STR R2, [SP,#0x4C+var_40]
MOV R7, R0
LDR R0, [SP,#0x4C+arg_0]

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Idiom: type casting
THUMB:
MOV R0, #0x20
ORR R0, R7
LSL R0, R0, #0x18
LSR R7, R0, #0x18

ARM:
ADD R1, R2, #1
MOV R3, R1,LSL#16
MOV R2, R3,LSR#16

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Example: XDA lock protection

• Version 1: read lock code directly from
memory through AT command.

• Look for lock related code.
• Look for device specific AT extensions.
• Result: lock is plain text readable by an AT

command: AT%UREG?3FE00C,4

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

read_UREG: @ DATA XREF: ROM:001AFD04
PUSH {R4,LR}
ADD R4, R1, #0
LDR R0, [R4]
LDR R1, =unk_3FE000
CMP R0, R1
BCC exit0
LDR R1, =unk_3FE007
CMP R0, R1
BHI exit0
LDR R1, [R4,#8]
ADD R2, R1, R0
LDR R3, =unk_3FE000
CMP R2, R3
BCC exit0
LDR R3, =unk_3FE007
CMP R2, R3
BLS ok

exit0: @ CODE XREF: read UREG+A
MOV R0, #0
POP {R4,PC}

ok: @ CODE XREF: read_UREG+20

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

obfuscate1: @ CODE XREF: do_SIDLCK2+3E�p
MOV R1, #2
ROR R0, R1
LSL R1, R0, #0x18
LSR R1, R1, #0x18
LSR R2, R0, #0x10
LSL R2, R2, #0x18
LSR R2, R2, #0x18
LSL R2, R2, #8
ORR R1, R2
LSL R2, R1, #8
LSR R1, R0, #0x18
LSL R1, R1, #0x18
LSR R1, R1, #0x18
ORR R1, R2
LSL R1, R1, #8
LSR R0, R0, #8
LSL R0, R0, #0x18
LSR R0, R0, #0x18
ORR R0, R1
MOV R1, #0x1D
ROR R0, R1
BX LR

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

XDA lock protection 2

• Version 2: Blocks AT command and
obfuscates lock.

• The AT%UREG address is blocked, but
does not take ‘roll-over’ into account:
AT%UREG?3FE004,FFFFFFFF

• Obfuscate is a simply reversable process.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

From obfuscate2
...
LSL R2, R0, #0x1C ; R2 = 0xC0000000
LSR R2, R2, #0x1C ; R2 = 0x0000000C
LSL R2, R2, #0x18 ; R2 = 0x0C000000
ORR R2, R3 ; R2 = 0x0C0DBA0A
STR R2, [R1,#4] ; Save the result
MOV R2, #0x1D
ROR R0, R2 ; assume R0 = 0x12345678
LDR R2, =0x7D0039F
STR R2, [R1]
LDR R2, =0xE0A060
STR R2, [R1,#4] ; Why throw away the result???
LSR R2, R0, #4 ; R2 = 0x01234567
LSL R5, R0, #4 ; R5 = 0x23456780
MOV R4, #0xF0
AND R4, R5 ; R4 = 0x00000080
LSL R3, R2, #0x1C ; R3 = 0x70000000
LSR R6, R3, #0x1C ; R6 = 0x00000007
LDR R3, [R1]
ORR R6, R3
...

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Usage:

 rbmc [FileName [StartAddr [Len]]]

Read back the memory content from the specified address to the host
and save the data to specified file name.
FileName : Full file path for save data of
memory(default=c:\temp\Mem.nb).
StartAddr : Start address of memory(default(hex)=A0000000).
Len : How many bytes will be read. And if not given value, it will be
Total ROM size on board - ((StartAddress & 0x0FFFFFFF) - (ROM base
address(0) & 0x0FFFFFFF)).

rchecksum 00000000 00000000
rwdata 00040000 00000000
rerase 00040000 00000000
rrbmc 1.nb 00000000 00000000

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

XDA II lock protection 1

• Version 3: Uses new obfuscate and blocks
AT command, but does allow bootloader
access.

• Look for new bootloader commands:
rrbmc test, 0x3fe302, 8

• Reverse obfuscation.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

doSECURITY:
...
ADD R0, SP, #0x70
ADD R1, SP, #0x60
LDMIA R1!, {R2,R3}
STMIA R0!, {R2,R3}
ADD R0, SP, #0x70
LDR R1, =key1
BL DESdecrypt
ADD R0, SP, #0x70
ADD R1, SP, #0x68
MOV R2, #8
BL memcmp
CMP R0, #0
BNE notkey1
LDR R5, =valLOCKTIME
MOV R0, #0
STRB R0, [R5]
LDR R0, =isSetAllowed
MOV R1, #1
STRB R1, [R0]
MOV R4, #0xFF
B printvalue

key1 DCB "%Ag2gWp",0x24
key2 DCB "5(EvO^9,"
key3 DCB "rG*344@T"

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

obfuscate2:

...
ORR R2, R3
ORR R4, R2
LSR R0, R0, #8
LSL R0, R0, #8
LSR R0, R0, #0x1C
LSL R0, R0, #0x14
ORR R0, R4
STR R0, [R1,#4]
POP {R4-R6,PC}

obfuscate3:

...
ORR R2, R3
ORR R1, R2
LSR R0, R0, #8
LSL R0, R0, #8
LSR R0, R0, #0x1C
LSL R0, R0, #0x14
ORR R0, R1
STR R0, [R4,#4]
MOV R0, R12
CMP R0, #1
BNE exit
BL encodekey
ADD R0, R4, #0
LDR R1, =lockkey
BL DES-decrypt

exit:
ADD SP, SP, #4
POP {R4-R7,PC}

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

XDA II lock protection 2

• Version 4: blocks bootloader reading locks
and improves obfuscation.

• Look at bootloader block.
• Look at obfuscate.
• Relook at locking code.
• Reverse AT%SECURITY code.
• Turn on GOD mode.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

XDA II lock protection

• Version X?
• Example: Use MD5 hash with the IMEI and

a long code.
• Prevent all write and read access to the

lock area.
• Make sure all developers know what they

are doing?

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Overview

What is ARM?
Reversing and Decompiling.
 Idioms and examples.
• Conclusions

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Conclusions

• ARM is a much used processor and very
common in a lot of consumer devices.

• The simple RISC instruction set:
– can lead to hard to follow, bitswapping code.
– lends itself to decompilation.

• Gaining control over the lowlevel ARM
code can lead to interesting possibilities.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Future outlook

• Improvements in decompilation will ease
Reverse Engineering.

• Embedded systems still increase the
unjustified feeling it will be ‘hard’ to break
in to them.

• More and more developing for embedded
systems becomes ‘easy’.
⇒ increase bad apps, increase attackers.

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Resources

• PocketPC reversing:
– http://www.ka0s.net
– http://xda-developers.com

• Symbian reversing
– http://phantasm.50megs.com

• Nokia reversing:
– http://www.blacksphere.tk
– http://nokiafree.org
– http://www.mados-technology.com/mados/

Reverse Engineering
ARM Based Devices

Job de Haas
ITSX BV

BlackHat
Amsterdam 2004

Resources 2

• Decompilation
– http://www.program-transformation.org/
– http://www.itee.uq.edu.au/~cristina/dcc.html
– http://boomerang.sourceforge.net/
– http://desquirr.sourceforge.net/

