
RUNTIME
Decompilation

Using a Dynamic Sampling Decompiler

By: Greg Hoglund
HBGary, LLC.

Chapter One
Methodologies

White Box

¥ White box:
Ð operating with full knowledge about the inner

workings of the system

¥ Can be used with source code or with
deadlisting*

¥ We build or use a mental model based on
Ð Intent as the builder
Ð Understanding of source code or deadlisting*

*the disassembly of the binary program

The model is not the machine

We know the mental model is not accurate
Ð The model is a close approximation of what is really

happening in the machine
¥ We hope the model has similar properties and behavior to

the machine, this helps us make predictions

Ð Emergent properties of software
¥ Without which we would not have (a very large) computer

security industry
¥ Emergent properties are often based on complex behavior

that is not replicated in the model
¥ The model is best when we already know what we are

looking for

Automatic Reverse Engineering

¥ Effective when certain conditions exist
Ð Availability of type information

Ð Separation of data and code

Ð All instructions can be recovered

Ð Data that drives control flow can be mapped
with enough resolution

¥ Just enough to help us find a potential vulnerability
and filter out the false positives

Branching Decisions

¥ Many branches are made based on values
that are calculated at runtime

¥ The static analyzer must emulate
execution to determine these values

¥ At some point, is the emulation is
computationally equivalent to running the
program in the first place?

Back-traces reach dead ends

¥ Back traced cross references can be used
to connect input with a code location

¥ Many times a static backtrace dead-ends
Ð Windows message handler

¥ We need to run the program to trace
where the input is coming from

Black Box

¥ All we see are the outputs from the
software Ð no inner workings

¥ Requires deep protocol knowledge to build
one a fuzzer
Ð ÔFuzzersÕ:

¥ Hailstorm and Spike

¥ Requires no knowledge to run one

¥ Automated (unattended)

Grow old waiting for this

¥ Fuzzers take FOREVER to complete their
input sequences.

¥ If the program is slow, this compounds the
problem

¥ Amounts to Ôbrute forcingÕ

¥ Crashes require a skilled debugger to
determine if an attacker can exploit the
fault

Evolution to Grey-box?

¥ Combine fault-injection with code analysis

¥ When you use a program debugger, your
performing grey-box analysis

¥ Performed at runtime so software can be
observed

¥ All instructions which are executed can be
obtained. All data involved at these points
can be tracked

Chapter Two
The Bugs

Easy Stuff

¥ These can be scanned for in static code
Ð NULL termination on strings

¥ strcpy, etc

Ð Off by one in string operations
¥ strncpy,etc

Ð Signed/Unsigned conversion errors

Ð Format strings

Hard Stuff

¥ These require runtime analysis
Ð Crafted-input parsing

Ð State corruption

Ð Control flow through computed values

Ð API call data indirectly calculated from user-
supplied data*

*to do this statically requires emulation Ð this only makes sense if you cannot
run the program or the code location cannot be reached using reasonable input

Is it actually exploitable?

¥ Depends on many variables in the
environment

¥ All automatic analysis tools have this
problem

¥ It almost always takes an expert reverse
engineer to determine if a condition is
exploitable

Does it matter?

¥ Even if a vulnerability cannot be reached
today Ð what can you say about
tommorow?

¥ What if interface changes?

¥ What if code gets used from other
locations?

¥ Is the original author going to be
maintaining this code in 10 years?

Chapter Three
Bug Scan

Easy Stuff Ð Introducing BugScan!

¥ BugScan is extremely simple to use

¥ Submit binary and get report

¥ Report cannot verify is conditions are
actually exploitable
Ð But it takes 30 seconds, not 30 hours

Ð Defensive stance Ð donÕt wait for someone to
attack before you protect yourself

Submit a File

View the Report

Desktop Firewall

ÒEngine.DLLÓ (overall, fairly good)
sprintf 7
wsprintfA 2
sscanf 2
_snprintf (good) 11
strncpy (good) 19
Signed/unsigned mismatches 1

ÒXXX.exeÓ (overall, fairly good)
wsprintfA 8
Signed/unsigned mismatches 5

Win32 Apache

ÒApache.exeÓ (good)
Nothing at all!

ÒApacheCore.DLLÓ (this should be spic-n-span)
sprintf 5

strcat 3

strcpy 3

sscanf 3

_snwprintf (good) 24

Signed/unsigned mismatches 14

FTP Server

ÒXXXftp.exeÓ (a little unsettling)
lstrcpyA 29

Signed/unsigned mismatches 1

AV Auto-update

ÒXXXmserver.exeÓ (dangerous!)
lstrcpynA 5

lstrcpyA 12

Signed/unsigned mismatches 50

Trillian

Òtrillian.exeÓ (a little unsettling)
wsprintfA 36

lstrcpyA 4

Signed/unsigned mismatches 6

Òirc.dllÓ (not that bad)
Signed/unsigned mismatches 9

Òhttp.dllÓ (not that bad)
Signed/unsigned mismatches 6

Video-conferencing (H323)

ÒXXXf.exeÓ (IÕm getting very nervous)
wsprintfA 36
lstrcpyA 47
Signed/unsigned mismatches 16
lstrcpynA (good) 42

ÒXXXchat.exeÓ (IÕm getting very nervous)
wsprintfA 15
lstrcpyA 19
lstrcpynA 2

More on bugscan

www.bugscaninc.com

info@bugscaninc.com

310-654-8745

Chapter Four
Tempest

Introducing TEMPEST

Hard Stuff

¥ Designed for experts working in a lab
process

¥ Requires reverse engineering skills not
limited to:
Ð Runtime debugging

Ð Assembly code

Ð Protocols

Ð Technical knowledge of programming bugs

TEMPEST

¥ Connect the inputs with the bugs

¥ Verify the exploit

¥ Build a working exploit

¥ Offensive stance Ð find working injection
vectors

¥ Based on a WORKFLOW process
Ð This is NOT a product

How does it work?

1. Find locations using static analysis
- IDA Pro is a good choice for this

2. Static backtraces from potential
vulnerable points

3. Dynamic forward traces from user-input
points

4. Tune your fuzzer until you Òconnect the
dotsÓ!

Static backtrace from suspect
locations

sprintf call

Blocks of code that
lead to sprintf

Coverage

¥ As program is used, if a code block is
visited it will be highlighted ÔgreyÕ*

Code

Block

Breakpoint

*this technique published by Halvar Flake, BlackHat Briefings (www.blackhat.com)

Fly-ByÕs & Drill Downs

¥ If we hit code blocks ÔaboveÕ a suspect
location we are alerted to potential
operations that will cause the target to be
exercised

¥ Coverage helps us tune our input data to
drill down to a target location
Ð This is the fundamental advantage

Tracing

Selected
Code Block

The code block
exits to all these
points

Trillian IRC DLL

Signed/Unsigned

mismatch in

subroutine

at 0x1000FE40

Graphing Problems

¥ Graph complexity increases with the
number of back traces

¥ Using tempest on more than a few target
points at a time results in a huge, unwieldy
graph

Advanced Graphing

¥ Different graphing algorithms can be used

¥ Hyperbolic graphs serve better for
browsing a large number of nodes

All code paths leading to sprintf call in commercial FTP server,
information obtained statically

WALRUS

www.caida.org

Filtering the set

¥ DonÕt worry about sprintf if the format
string doesnÕt contain %s

¥ DonÕt worry about off by ones if the size
parameter is less than the stack correction

¥ DonÕt worry about anything if the source
data is not obtained from outside the
function

Boron Tagging

¥ Traces from known points

¥ Breakpoints on suspect calls

¥ Can be used as a strategy to skip large
sections of the graph
Ð These become ÔclustersÕ

Ð We cannot create a spanning tree graph
unless everything is connected

Leap Frogging

recv(É)
Change page protection
in order to track access

mov edx, [esi]

lea edx,
[esi]

mov [ecx], eax

Leapfrog with Boron

¥ Read memory to find all boron strings

¥ Set memory breakpoints on all these
locations

¥ Locations are typically re-used

¥ DoesnÕt always work because memory is
cleared after use

Data Flow Analysis

EAX
EDI

HEAP

STACK

HEAP

STACK

SQL Inject an FTP Server?*

Access Data Objects Exception Recorded Code = 80040e14
Msg: IDispatch error #3092
Source: Microsoft JET Database Engine
Description: Characters found after end of SQL statement.
Tracer: CFTPServer::GetUser

Tue, 01 Apr 2003 (20:09:23) - Closing connection for 127.0.0.1.

C:\>ftp localhost
Connected to GREG-C840.clicktosecure.com.
220-XXXXXXXXXX FTP Server Version 2.6.5 Release 5 - Build 1690
220 service ready
User (GREG-C840.clicktosecure.com:(none)): ffff';DELETE FROM ACCOUNTS WHERE ACCO
UNT_ID = 1;SELECT * FROM ACCOUNTS WHERE NAME = 'ff
331 User name okay, need password.
Password:
530-Database Exception occurred. See server log files for more information
530 closing control connection.
Login failed.
ftp> Invalid command.
ftp>

*this vulnerability is undisclosed, therefore the vendor will not be identified

Buffer Overflow*

¥ Quote CLNT
ff
ff
fffffffffffffffffffffffffffffffffff (a few hundred of
these)

* Included because I would feel like a complete loser if I did not reveal at least
one buffer overflow in this talk.

Chapter Five
ÔThe ProcessÕ

ID locations
using static

analysis
Backtrace
from
potentially
vulnerable API
call or location

Static traces

ID locations
using static

analysis Static traces

FUZZ

Locations which
are visited are
tagged grey

This is a HIT

- This causes
a work item to
be exercised.

Is user-supplied data used in the suspect call?

ID locations
using static

analysis Static traces

FUZZ

Faults?

Faults?

Unresolved
Branches?

Use Data Flow
Analysis to
determine if

branch is
calculated from
user-controlled

data

Incomplete
branch
coverage

Modify input
fuzzer to

compensate

This location is the nearest fly-
by. To solve the problem we
must visit this location and
determine what data is being
used to make the branching
decision.

In most cases, the value is not
directly controlled by the fuzzer.
This means that we must trace
back further to determine if the
value is calculated from user
input. This is both tedious and
time consuming.

wsprintf that uses
%s **

** this graph generated from commercial proxy server (vendor not revealed)

Conclusion

¥ There exists a process to connect user-
input to potential vulnerabilities

¥ By tracing data and control flow at runtime,
a fuzzer can be tuned to target a location

¥ Only a certain percentage of those bugs
identified statically will be exploitable

Closing Remarks

BugScan is a commercial product that can
be obtained from

www.bugscaninc.com

Closing Remarks

Spike is free and can be obtained from

www.immunitysec.com

Hailstorm is not free, and can be obtained

from

www.cenzic.com

Closing Remarks

¥ The Tempest debugging system is used
internally by HBGary, LLC and is not a
commerical product

¥ Many components of the tempest system
are open source and can be obtained for
study

www.hbgary.com

Thank You

Greg Hoglund

HBGary, LLC.

hoglund@rootkit.com

www.hbgary.com

