Deconstructing a ‘Secure’ Processor

Black Hat – Washington D.C.

Christopher Tarnovsky
Flylogic, Inc.
chris@flylogic.net – http://www.flylogic.net
- Decapsulate
- Perform initial examination
- Identify device if possible
- Image layers
- Identify and understand challenges
• Remove silicon substrate from samples (decapsulate)
• Device analysis via microscopy to determine:
 • Is there a mesh present? If so, time will be spent to understand how to overcome challenge.
 • Understand bond pad layout.
 • Nomenclature on part to help identify better from public documentation.
 • Databus routing from memories.
Prepare:

- Small physical geometry on current architectures (<220nm, 4+ metals)
- Lower internal operating voltage
- Fast internal operating frequency
- Runs asynchronous to outside world clock frequency
- Only synchronization will be outside world reset signal
- Memories will be encrypted. Will need to locate the central core of the CPU.
- Find access to a Focused Ion-Beam workstation.
- **Execute:**
 - Mesh present over device?
 - Determine how to bypass
 - Most likely requires FIB edits
 - Find the ‘clear’ databus
 - Place probing needles down on the bus and examine running code
 - Determine CPU architecture from running code if not already known.
 - Today’s CPU architectures are commonly found to be 6805 (ST), 8051 (Infineon, NXP) or AVR (Atmel) instruction sets.
 - Examine running logs from databus
 - Most developers trust these devices to execute code as was written
 - Glitch device momentarily to abuse CPU to spill code/data bytes
 - Capture code/data bytes via IO line or needles on bus
Mission accomplished, next chip!