2010
N

Netherlands Forensic Institute, <www.nederlandsforensischinstituut.nl>
Matthieu Suiche <http://www.msuiche.net>
BlackHat Briefing, Washington DC (February 2010)

TABLE OF CONTENTS

T (o e [¥To1d o] o WU TSP OO PO PPTUPTPPPUPPRRPOR 2
V=T o o) VAo o [T N = 0 1 F= Y o o DO USRS 2
QuIck Translation FOMUIA.......c.coiiiiie e et 2
SMaArt Translation FOrMUIAc.ooiiieeeee et en e 2
Y21 oo F-3 PSSR 3
FAt HEAUET ...ttt ettt b e bt sh e s at e et e e s bt e s heesaeesabeeabe e be e bt e aneeeneeentean 4

Y Tl T o [T o L] PSPPSR PP 5
Information Extraction (AlSO KNOW AS ANAIYSIS)eeiuieiiiieeiieeeiie e e st e et e steeeteeesraeesbeeesaaeesreeesaeesareean 7
Maching INFOrMATION ...c...iiiiiii et s e s st e e sr e e reesnee e 7
MOUNTEA FilE SYSTEIMS...eii ittt e e et e e e e et e e e e e be e e e e eabeeeeesabaeeeesnbaeaeeasbeeeeennsaeaeenrenas 7
BSD PrOCESSES ...ttt ettt ettt et e e s e e e b e e s r e e s e bt e e s e b e e e s e r et e e s ereneessnee 10
Kernel Extensions (Also Known As Drivers, Kernel Modules)cccccueeeeiiiiieieciiee et 15
SYSEEM CAIIS ...ttt e et e e et e e e et e e e et e e e ettt e e e e nbaeeeaabaeeeanbeaeeanrreeeenarees 16
TRANKS ettt e r e b a e s et s bbbt e re e ene e eae e eareere s 18

[ADVANCED MAC OS X PHYSICAL MEMORY ANALYSIS]

In 2008 and 2009, companies and governments (e.g. Law Enforcement agencies) interests for Microsoft Windows
physical memory grew significantly. Now it is time to talk about Mac OS X. This paper will introduce basis of Mac
OS X Kernel Internals regarding management of processes, threads, files, system calls, kernel extensions and more.
Moreover, we are going to details how to initialize and perform a virtual to physical translation under an x86 Mac
OS X environment.

ADVANCED MAC OS X PHysIcAL MEMORY ANALYSIS

INTRODUCTION

In 2008 and 2009, companies and governments (e.g. Law Enforcement agencies) interests for Microsoft Windows
physical memory grew significantly. Now it is time to talk about Mac OS X. This paper introduces Mac OS X Kernel
Internals regarding management of processes, threads, files, system calls, kernel extensions and more. We provide
details on how to initialize and perform a virtual to physical translation under a x86 Mac OS X environment.

Physical Memory is widely known in the UNIX world as /dev/mem.

MEMORY ADDRESS TRANSLATION

QuICK TRANSLATION FORMULA

Most Operating Systems have a way to compute the kernel physical address even if you do not have the cr3
register value which is used as Directory Table Base for virtual to physical address translation. If you want to have
more detailed information on this, please refer to Intel64 and IA-32 Architectures Software Developer’s Manuel:

Volume 3A System Programming Guide.*

By kernel physical addresses, | mean the kernel image (DATA & _ CODE sections) physical address. Both
contain important information and variables we need. For instance, to reconstruct the kernel address space we
need to be able to use Smart Translation Formula which requires variables we can retrieve using Quick Translation
Formula. As | said above, with Quick Translation Formula we can only accessto DATA and CODE sections of
the kernel image and not to allocated buffers.

Here is a summary of some operating systems with their corresponding formula to translate from Kernel Virtual
Address (KVA) to Kernel Physical Address (KPA).

Operating System Quick translation formula

x86 Linux KPA = KVA — 0xC0000000
PlayStation 3 Linux KPA = KVA - 0xC000000000000000
x86 Windows KPA = KVA & Ox1FFFFO00

Mac 0S X KPA = KVA

As you can see the formula for Mac OS X, is the easiest existing formula.

SMART TRANSLATION FORMULA

Using Quick Translation Formula, we can retrieve variables from DATA section and initialized by
slave pstart () function of Mac OS X Kernel, which is called during the Operating System initialization.

! 3.6 PAGING (VIRTUAL MEMORY) OVERVIEW.

Introduction | NFI

There are ~4 variables which are interesting to perform the Smart Translation Formula: IdlePDPT,
Id1ePDPT64, Id1ePML4 and Id1ePTD.

Id1lePML4 variable is initialized even on 32-bits Operating System. PML4 stands for Page Map Level 4 paging
structure. This method can be used to address up to 2427 pages, which spans a linear address space of 2248 bytes.

Then, using Id1ePML4 variable we can cover a translation mechanism for a linear address space of 2248 bytes
even if the processor cannot do it. Internally, in kernel structures, Mac OS X is using 64-bits addressing for memory
objects.

These variable are used later to initialize kernel_map and kernel_pmap kernel structures/variables.

Here is a common output of these variables under Mac OS X Leopard.

* IdlePML4: [0x004EBOOC] = 0x01219000

0x01219000: 27 A0 21 01 00 00 OO 0O - 00 OO 00 00 OO0 00 00 00 ...viveviinnn..
0x01219010: 00 00 OO 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vivuvininennn.
0x01219020: 00 00 00O 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vivuviuinennn.
0x01219030: 00 00 00O 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vvvnvininennn.
0x01219040: 00 00 00O 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vevuvniinennn.
0x01219050: 00 00 00O 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vevnvininennn.

* IdlePDPT64: [0x004EB010] = 0x0121A000

0x0121A000: 27 CO 21 01 00 00 00 00 - 27 DO 21 01 00 00 00 00 ...vvvnvinninnnnn.
0x0121A010: 27 EO 21 01 00 00 00 00 - 27 FO 21 01 00 00 00 00vuvniuinennn.
0x0121A020: 00 00 OO0 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vuvuvinnnnnnn.
0x0121A030: 00 00 00O 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..iuvuvinnnnnnn.
0x0121A040: 00 00 00O 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vevuvinvnnnnn.
0x0121A050: 00 00 00 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vevuvniwinennn.

* IdlePDPT: [0x004EB008] = 0x0121B000

0x0121B000: 01 CO 21 01 00 00 00 00O - 01 DO 21 01 00 00 00 00 ...vvevinnn..
0x0121B010: 01 EO 21 01 00 00 00 00 - 01 FO 21 01 00 00 00 00 ...vvevinnn..
0x0121B020: 00 00 00O 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vevevinnennnnn.
0x0121B030: 00 00 00 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vvvuviwinennn.
0x0121B040: 00 00 00 00 00 00O OO 00 - 00 00 00 00 00 00 00 00 ..vevuvininennn.
0x0121B050: 00 00 00 00 00 0O OO 00 - 00 00 0O 00 00 00 00 00 ..vvvuvnieinennn.

* IdlePTD: [0x004EBO04] = 0x0121C000

0x0121C000: 63 50 02 01 00 00 00 00 - 63 60 02 01 00 OO0 OO 00 cP...... Clein
0x0121C010: 63 70 02 01 00 00 00 00O - 63 80 02 01 00 00 00 00 cp.+.... Cueeennn
0x0121C020: 23 90 02 01 00 00 00 00 - 23 A0 02 01 00 00 00 00 v ennnn
0x0121C030: 63 BO 02 01 00 00 00 00 - 63 CO 02 01 00 00 00 00 cevevnn. Cuweennn
0x0121C040: 63 DO 02 01 00 00 00 00 - 63 EO 02 01 00 00 00 00 cevvvnn. Chuoveennn
0x0121C050: 63 FO 02 01 00 00 00 00 - 63 00 03 01 00 00 00 00 cevvvnn Cuweennn

SYMBOLS

Symbols are a key element of volatile memory forensics without them an advanced analysis is impossible. Symbols
of Microsoft Windows are available on a remote server as standalone files, but on Mac OS X symbols are directly
stored inside the executable in a segment/section called LINKEDIT.

Symbols | NFI

The easiest way to retrieve kernel symbols is to extract them from the kernel executable of the hard-drive.

Symbols are firstly used to retrieve the address of memory variable for Smart Translation Formula.

FAT HEADER
Mac OS X file format follows the FAT file format which contains magic signature of the header and the number of
different architectures entries (i386, PowerPC or Both) inside the executable in big endian.

#define FAT MAGIC OxBEBAFECA

typedef struct FAT HEADER
{

ULONG magic;

ULONG nfat arch;
} FAT HEADER, *PFAT HEADER;

To jump to the first architecture entry we add sizeof (FAT HEADER) bytes to the pointer of the file header.
Earch entry uses the following definition, and also uses the big endian endianess.

typedef struct FAT ARCH

{
cpu_type t cputype;
cpu_subtype t cpusubtype;
ULONG offset;
ULONG size;
ULONG align;

} FAT ARCH, *PFAT ARCH;

The first field, cpu_type, indicates to the loader what kind of architecture this entry defines using the following
description:

typedef enum

{
CPU TYPE VAX = 1,
CPU TYPE ROMP = 2

I~

CPU_TYPE NS32032 = 4,
CPU_TYPE NS32332 = 5,
CPU_TYPE MC680x0 = 6,

CPU_TYPE I386 = 7,

CPU_TYPE MIPS = 8,

CPU_TYPE NS32532 = 9

CPU_TYPE MC98000 = 1

CPU TYPE HPPA = 11,

CPU TYPE ARM = 12,

CPU_TYPE MC88000 = 13,

CPU TYPE SPARC = 14,

CPU_TYPE I860 = 15,

CPU TYPE ALPHA = 16,

CPU TYPE POWERPC = 18,

/* APPLE LOCAL 64-bit */

CPU TYPE POWERPC 64 = (18 | CPU_IS64BIT),

/* APPLE LOCAL x86 64 */

CPU TYPE X86 64 = (CPU TYPE I386 | CPU IS64BIT)
} cpu_type t;

0,

Symbols | NFI

And the third field, of £set, contains the raw offset of the architecture header.

We assume index x is the id of the CPU_TYPE_I386 architecture. So we have FAT ARCH[x].cputype
equals to CPU_TYPE I386 and FAT ARCH[x].offset as new pointer offset to the MACH HEADER
structure.

MACH HEADER
Now we have a pointer the i386 architecture binary using the following header definition and little-endian
endianess.

#define MH MAGIC Oxfeedface

typedef struct MACH HEADER
{
ULONG Magic;
cpu_type t cputype;
cpu_subtype t cpusubtype;
ULONG filetype;
ULONG ncmds;
ULONG sizeofcmds;
ULONG flags;
} MACH HEADER, *PMACH HEADER;

This architecture validity can be verified using the Oxfeedface magic key.

Now we can read what Apple calls commands, the field MACH HEADER.ncmds indicates the number of
commands inside the Mach-O binary.

We have to add sizeof (MACH HEADER) to the Mach-O header pointer to have a pointer to the first command
entry. There are different commands types and size of commands depends of their type. Most important
commands types are LC SEGMENT and LC_ SYMTAB.

#define LC_ SEGMENT 0x1 /* file segment to be mapped */
#define LC_SYMTAB 0x2 /* link-edit stab symbol table info (obsolete) */

And very two first fields contains information about the command’s type and its size, using the following
scheme:

typedef struct LOAD COMMAND ({

ULONG cmd; /* type of load command */

ULONG cmdsize; /* total size of command in bytes */
} LOAD_ COMMAND, *PLOAD COMMAND;

Command type called LC_SYMTAB, contains raw pointers to two different tables. One, called symoff, with
NLIST structures-based entries, and another, called stroff, with functions and variables names of each
corresponding entry in the same order.

typedef struct SYMTAB COMMAND
{

ULONG cmd;

ULONG cmdsize;

Symbols | NFI

ULONG
ULONG
ULONG
ULONG
} SYMTAB

typedef struct

{

Both symoff and stroff are
FAT ARCH[x

offset.

symoff;
nsyms;
stroff;
strsize;
COMMAND,

ULONG n_strx;
UCHAR n_type;
UCHAR n_sect;

USHORT n_desc;
ULONG n_value;
} NLIST,

*PNLIST;

*PSYMTAB COMMAND;

_NLIST

pointer into the

__ LINKEDIT segment. Please note we have to add

] .offset value to these fields. And n_value field from NLIST structure contains the symbol

Here is a short dump of symbols retrieved from Mac OS X Leopard kernel.

[000000]
[000001]
[000002]
[000003]
[000004]
[000005]
[000006]
[000007]
[000008]
[000009]
[000010]
[000011]
[000012]
[000013]
[..]

[000223]
[000224]
[000225]
[000226]
[000227]
[000228]
[000229]
000230]
0002311
000232]

-1

0025771
002578]
002579]
002580]
002581]
002582]
002583]
002584]
002585]
002586]
0025871

[
[
[
[-
[
[
[
[
[
[
[
[
[
[
[
[..]

.constructors_used
.destructors_used

_AARPwakeup
_APTD
_APTDpde
_APTmap
_ASPgetmsg
_ASPputmsg
_ATPgetreq
_ATPgetrsp
_ATPsndreq
_ATPsndrsp
_ATgetmsg
_ATputmsg

_IOZeroTvalspec

IS 64BIT PROCESS

_IdlePDPT
_IdlePDPT64
_IdlePML4
_IdlePTD
_InitGlobals
_InsertKeyRecord
_InsertOffset
_InsertRecord

___ZN32I0ServiceMessageUserNotificationC2EPK110SMetaClass
__ZN32I0ServiceMessageUserNotificationC2Ev
___ZN32I0ServiceMessageUserNotificationDOEv
__ZN32I0ServiceMessageUserNotificationDlEv
ZN32I0ServiceMessageUserNotificationD2Ev

__ZN5IOCPUlOgMetaClassE
___ZN5IOCPUl0superClassE
__ZN5IOCPUl1lgetCPUGroupEv
___ZNS5IOCPUllgetCPUStateEv
___ZN5IOCPUllsetCPUStateEm

__ZN5IOCPUllsetPropertyEPK80SSymbolP80SObject

0x0050F254
0x0050F25C
0x0029F6BD
OxFEF7F8000
OXFEFF7FCO
0xFF000000
0200293448
0x00293A3F
0x002A5A12
0x002A5A79
0x002A592C
0x002A599F
0x002A5844
0x002A58B8

0x0050EE18
0x00373952
0x004EB008
0x004EB010
0x004EBOOC
0x004EB004
0x002A3A08
0x003477C8
0x003475A1
0x00347703

0x004354AA
0x0043560E
0x0043553A
0x0043551A
0x004354FA
0x0052E838
0x004BDE7C
0x004300A2
0x00430082
0x0043008E
0x0042FE68

- Symbols | NFI

[013859] _zt ent zindex 0x00299028
[013860] =zt find zname 0x00298D6D
[013861] =zt getNextZone 0x0029910E
[013862] =zt get zmcast 0x00298F1D
[013863] =zt remove zones 0x00298CDD
[013864] _zt set zmap 0x002990B6

INFORMATION EXTRACTION (ALSO KNOW AS ANALYSIS)

Once memory manager is functional, we can now proceed to the extraction of information such as process list and
so on.

MACHINE INFORMATION

Machine identification is a very important part to validate result. This section covers how to retrieve Darwin
version, compilation date, number of CPUs and available memory on the current system.

There is a global variable, accessible from symbols, called version which contains a 100 bytes string with O.S.
Type, O.S. Release version, username who compiled it.

There is another global variable, accessible from symbols, called machine info defined by machine info
structure which contains information about CPUs and Memory of the target machine.

Definition of machine info structure can be retrieved in xnu/osfmk/mach/machine.h header file.
Below is the definition of machine info structure under Mac OS X Snow Leopard.

struct machine info {
integer t major version; /* kernel major version id */
integer t minor version; /* kernel minor version id */
integer t max cpus; /* max number of CPUs possible */
uint32 t memory size; /* size of memory in bytes, capped at 2 GB */
uint64 t max mem; /* actual size of physical memory */
uint32 t physical cpu; /* number of physical CPUs now available */
integer t physical cpu max; /* max number of physical CPUs possible */
uint32 t logical cpu; /* number of logical cpu now available */
integer t logical cpu max; /* max number of physical CPUs possible */

ue Oct ¢ 21:35:55 PDT 2 iy rootixnu-1228™1 /RELEASE_I386
9

5]
4

-H:nnry: 1824 HB

umber of 1 C B
unber of logical CPUs: i

Above is a screenshot of extraction information showing the target machine is running Mac OS X Leopard 10.5.0
with 1GB of physical memory.

MOUNTED FILE SYSTEMS

Information Extraction (Also Know As Analysis) | NFI

Mounted file systems are defined by a global list-head, accessible from symbols, called mountlist. mountlist
is a single link-list and contains a pointer called next which is a pointer to the next mounted file system entry both
are defined by mount structure.

This structure contains 3 important fields including: file system type (f fstypename), directory on which
mounted (f_mntonname) and mounted file system (f mntfromname).

Definition of mount structure can be retrieved in xnu/bsd/sys/mount_internal.h header file.

Below is the definition of mount structure under Mac OS X Snow Leopard.

/*
Structure per mounted file system. FEach mounted file system has an
array of operations and an instance record. The file systems are

* put on a doubly linked list.

*/

struct mount {
TAILQ ENTRY (mount) mnt list; /* mount list */
int32 t mnt count; /* reference on the mount */
lck mtx t mnt mlock; /* mutex that protects mount point */
struct vifsops *mnt op; /* operations on fs */
struct vfstable *mnt vtable; /* configuration info */
struct vnode *mnt vnodecovered;/* vnode we mounted on */
struct vnodelst mnt vnodelist; /* list of wvnodes this mount */
struct vnodelst mnt workerqueue; /* list of vnodes this mount */
struct vnodelst mnt newvnodes; /* list of vnodes this mount */
uint32 t mnt flag; /* flags */
uint32 t mnt kern flag; /* kernel only flags */
uint32 t mnt 1flag; /* mount life cycle flags */
uint32 t mnt maxsymlinklen;/* max size of short symlink */
struct vfsstatfs mnt vfsstat; /* cache of filesystem stats */
gaddr_t mnt data; /* private data */
/* Cached values of the IO constraints for the device */
uint32 t mnt maxreadcnt; /* Max. byte count for read */
uint32 t mnt maxwritecnt; /* Max. byte count for write */
uint32 t mnt segreadcnt; /* Max. segment count for read */
uint32 t mnt segwritecnt; /* Max. segment count for write */
uint32 t mnt maxsegreadsize; /* Max. segment read size */
uint32 t mnt maxsegwritesize; /* Max. segment write size */
uint32 t mnt alignmentmask; /* Mask of bits that aren't addressable

via DMA */
uint32 t mnt devblocksize; /* the underlying device block size */
uint32 t mnt ioqueue depth; /* the maxiumum number of commands a

device can accept */
uint32 t mnt ioscale; /* scale the various throttles/limits imposed
on the amount of I/0 in flight */
uint32 t mnt ioflags; /* flags for underlying device */
pending io t mnt pending write size; /* byte count of pending writes */
pending io t mnt pending read size; /* byte count of pending reads */

lck rw_t mnt rwlock; /* mutex readwrite lock */

lck mtx t mnt renamelock; /* mutex that serializes renames that change
shape of tree */

vnode t mnt devvp; /* the device mounted on for local file systems */

‘ Information Extraction (Also Know As Analysis) | NFI

uint32 t mnt devbsdunit; /* the BSD unit number of the device */

void *mnt throttle info; /* used by the throttle code */

int32 t mnt crossref; /* refernces to cover lookups crossing into mp
*/

int32 tmnt iterref; /* refernces to cover iterations; drained makes it
—ve ¥/

/* XXX 3762912 hack to support HFS filesystem 'owner' */
uid t mnt fsowner;
gid t mnt fsgroup;

struct label *mnt mntlabel; /* MAC mount label */
struct label *mnt fslabel; /* MAC default fs label */

~

b S . U S S N S S S

cache the rootvp of the last mount point

in the chain in the mount struct pointed

to by the vnode sitting in '/'

this cache is used to shortcircuit the
mount chain traversal and allows us

to traverse to the true underlying rootvp
in 1 easy step inside of 'cache lookup path’

make sure to validate against the cached vid

in case the rootvp gets stolen away since

we don't take an explicit long term reference
on it when we mount it
/
vnode t mnt realrootvp;
uint32 t mnt realrootvp vid;

/*

* bumped each time a mount or unmount

* occurs... its used to invalidate

* 'mnt realrootvp' from the cache

*/
uint32 t mnt generation;
/*

if 'MNTK AUTH CACHE TIMEOUT' is

set, then 'mnt authcache ttl' is

the time-to-live for the per-vnode authentication cache
on this mount... if zero, no cache is maintained...
if 'MNTK AUTH CACHE TIMEOUT' isn't set, its the
time-to-live for the cached lookup right for
volumes marked 'MNTK AUTH OPAQUE'.

b . R I S

int mnt authcache ttl;

~
X ot

The proc structure pointer and process ID form a

* sufficiently unique duple identifying the process
* hosting this mount point. Set by vfs markdependency ()
* and utilized in new vnode () to avoid reclaiming vnodes
* with this dependency (radar 5192010).
*/

pid t mnt dependent pid;

void *mnt dependent process;

}s

‘ Information Extraction (Also Know As Analysis) | NFI

type mounted on mounted from
hfs

devfs

fdesc sdev

autofs snet

autofs ~home

hfs Ao lumesUMuare Tools

hfs Slolumes 053 BAK

msdos #Uolumes-FATBACK

A
1
2
3
4
5
6
?

Above is a screenshot of mounted file systems including an external hard-drive.
BSD PROCESSES
Every Operating System uses user-land processes, it is one of the key element of a working O.S.

Loaded processes are stored into proc structure which contains a double-list to walk into the list. There is a global
variable, retrievable from symbols, called kernproc is the list-head of BSD processes list.

p_list fieldisa double link-list which contains a pointer to both, the previous and the next process.
Definition of proc structure can be retrieved in xnu/bsd/sys/proc_internal.h header file.

Below is the definition of proc structure under Mac OS X Snow Leopard.

/*
* Description of a process.
*
* This structure contains the information needed to manage a thread of
* control, known in UN*X as a process; it has references to substructures
* containing descriptions of things that the process uses, but may share
* with related processes. The process structure and the substructures
* are always addressible except for those marked " (PROC ONLY)" below,
* which might be addressible only on a processor on which the process
* is running.
*/
struct proc {
LIST ENTRY (proc) p list; /* List of all processes. */
pid t p_pid; /* Process identifier. (static)*/
void * task; /* corresponding task (static)*/
struct proc *p pptr; /* Pointer to parent process. (LL) */
pid t P _ppid; /* process's parent pid number */
pid t p_pgrpid; /* process group id of the process (LL)*/
lck mtx t p_mlock; /* mutex lock for proc */
char p_stat; /* S* process status. (PL)*/
char p_shutdownstate;
char p_kdebug; /* P_KDEBUG eq (CC)*/
char p_btrace; /* P_BTRACE eq (CC)*/
LIST ENTRY (proc) p pglist; /* List of processes in pgrp. (PGL) */

LIST ENTRY (proc) p sibling; /* List of sibling processes. (LL)*/
LIST HEAD(, proc) p children; /* Pointer to list of children. (LL)*/
TAILQ HEAD(, uthread) p uthlist; /* List of uthreads (PL) */

Information Extraction (Also Know As Analysis) | NFI

LIST ENTRY (proc) p_hash; /* Hash chain. (LL)*/
TAILQ HEAD(,eventgelt) p evlist; /* (PL) */

lck mtx t p_fdmlock; /* proc lock to protect fdesc */

/* substructures: */

kauth cred t p_ucred; /* Process owner's identity. (PL) */

struct filedesc *p fd; /* Ptr to open files structure. (PFDL) */

struct pstats *p stats; /* Accounting/statistics (PL). */

struct plimit *p limit; /* Process limits. (PL) */

struct sigacts *p sigacts; /* Signal actions, state (PL) */

int p_siglist; /* signals captured back from threads */

lck spin t p_slock; /* spin lock for itimer/profil protection */
#define p rlimit p limit->pl rlimit

struct plimit *p olimit; /* old process limits - not inherited by
child (PL) */

unsigned int p_flag; /* P_* flags. (atomic bit ops) */

unsigned int p _1lflag; /* local flags (PL) */

unsigned int p listflag; /* list flags (LL) */

unsigned int p_ladvflag; /* local adv flags (atomic) */

int p_refcount; /* number of outstanding users(LL) */
int p_childrencnt; /* children holding ref on parent (LL) */
int p_parentref; /* children lookup ref on parent (LL) */

pid t p oppid; /* Save parent pid during ptrace. XXX */
u_int p xstat; /* Exit status for wait; also stop signal. */

#ifdef PROC_HAS SCHEDINFO

/* may need cleanup, not used */

u_int p estcpu; /* Time averaged value of p cpticks. (used by aio and
proc_comapre) */

fixpt t p pctcpu; /* Scpu for this process during p swtime (used by
aio) */

u_int p slptime; /* used by proc compare */
#endif /* PROC HAS SCHEDINFO */

struct itimerval p realtimer; /* Alarm timer. (PSL) */
struct timeval p rtime; /* Real time. (PSL) */
struct itimerval p vtimer user; /* Virtual timers. (PSL) */
struct itimerval p vtimer prof; /* (PSL) */

struct timeval p rlim cpu; /* Remaining rlim cpu value. (PSL) */
int p_debugger; /* NU 1l: can exec set-bit programs if suser */
boolean tsigwait; /* indication to suspend (PL) */

void *sigwait thread; /* 'thread' holding sigwait (PL) */

void *exit thread; /* Which thread is exiting(PL) */

int p_vforkent; /* number of outstanding vforks (PL) */
void * p vforkact; /* activation running this vfork proc) (static) */
int p_fpdrainwait; /* (PFDL) */

pid t p contproc; /* last PID to send us a SIGCONT (PL) */

/* Following fields are info from SIGCHLD (PL) */
pid t si pid; /* (PL) */

Information Extraction (Also Know As Analysis) | NFI

u_int si status;/* (PL) */
u_int si code; /* (PL) */
uid t si uid; /* (PL) */

void * vm_shm; /* (SYSV SHM Lock) for sysV shared memory */

#if CONFIG DTRACE
user addr t p dtrace argv; /* (write once, read only after that) */
user addr t p dtrace envp; /* (write once, read only after that) */
lck mtx t p_dtrace sprlock; /* sun proc lock emulation */
int p_dtrace probes; /* (PL) are there probes for this proc? */
u_int p dtrace count; /* (sprlock) number of DTrace tracepoints */
struct dtrace ptss page* p dtrace ptss pages; /* (sprlock) list of user
ptss pages */
struct dtrace ptss page entry* p dtrace ptss free list; /* (atomic)
list of individual ptss entries */
struct dtrace helpers* p dtrace helpers; /* (dtrace lock) DTrace per-
proc private */
struct dof ioctl data*p dtrace lazy dofs; /* (sprlock) unloaded
dof helper t's */
#endif /* CONFIG DTRACE */

/* XXXXXXXXXXXXX BCOPY'ed on fork XXXXXXXXXXXXXXXX */
/* The following fields are all copied upon creation in fork. */

#define p_startcopy p_argslen
u_int p argslen; /* Length of process arguments. */
int p_argc; /* saved argc for sysctl procargs() */
user addr t user stack; /* where user stack was allocated */
struct vnode *p_ textvp; /* Vnode of executable. */
off t p textoff; /* offset in executable vnode */
sigset t p sigmask; /* DEPRECATED */
sigset t p sigignore; /* Signals being ignored. (PL) */
sigset t p sigcatch; /* Signals being caught by user. (PL) */
u_char p_priority; /* (NU) Process priority. */
u_char p_resv0; /* (NU) User-priority based on p cpu and
p nice. */
char p_nice; /* Process "nice" value. (PL) */
u_char p_resvl;/* (NU) User-priority based on p cpu and p nice. */

#if CONFIG MACF
int p _mac_enforce;/* MAC policy enforcement control */
#endif

char p comm[MAXCOMLEN+1];
char p name[(2*MAXCOMLEN)+1];/* PL */

struct pgrp *p_pgrp; /* Pointer to process group. (LL) */

int p_iopol disk; /* disk I/0 policy (PL) */

uint32 t p_csflags; /* flags for codesign (PL) */

uint32 t p_pcaction; /* action for process control on starvation */
uint8 t p uuid[16]; /* from LC UUID load command */

/* End area that is copied on creation. */
/* XXXXXXXXXXXXX End of BCOPY'ed on fork (AIOLOCK)XXXXXXXXXXXXXXXX */

Information Extraction (Also Know As Analysis) | NFI

#define p_endcopy p_aio_total count

int p_aio total count;/* all allocated AIO requests for this
proc */

int p_aio active count;/* all unfinished AIO requests for this
proc */

TAILQ HEAD(, aio workg entry) p_aio activeq; /* active async IO
requests */

TAILQ HEAD(, aio workq entry) p aio doneg; /* completed async IO

requests */

struct klist p klist; /* knote list (PL ?)*/

struct rusage *p_ru;/* Exit information. (PL) */
thread t p_signalholder;
thread t p_transholder;

/* DEPRECATE following field */

u_short p_acflag; /* Accounting flags. */

struct lctx *p lctx; /* Pointer to login context. */

LIST ENTRY (proc) p lclist; /* List of processes in lctx. */
user addr_t p_threadstart; /* pthread start fn */
user addr_t p_wgthread; /* pthread workqueue fn */

int p_pthsize; /* pthread size */

user addr t p targconc; /* target concurrency ptr */

void * p_wgptr; /* workqg ptr */

int p_wgsize; /* allocated size */

boolean t p_wginiting; /* semaphore to serialze wqg open */
lck spin t p wqglock; /* lock to protect work queue */
struct timeval p start; /* starting time */

void * p rcall;

int p_ractive;

int p_idversion; /* version of process identity */

void * p_pthhash; /* pthread waitqueue hash */

#if DIAGNOSTIC
unsigned int p fdlock pc[4];
unsigned int p_ fdunlock pcl4];
#if SIGNAL DEBUG
unsigned int lockpc[8];
unsigned int unlockpc[8];
#endif /* SIGNAL DEBUG */
#endif /* DIAGNOSTIC */
uint64 t p_dispatchqueue offset;
}i

Pointer to the process group, pgrp structure, allows us to retrieve the username of the person who launched the
program because this structure contains a pointer to a structure called session with the username.

Definition of pgrp structure can also be retrieved in xnu/bsd/sys/proc_internal.h header file.

Below is the definition of pgrp structure under Mac OS X Snow Leopard.

/*

* One structure allocated per process group.
*/

struct pgrp {

Information Extraction (Also Know As Analysis) | NFI

LIST ENTRY (pgrp) pg hash; /* Hash chain. (LL) */

LIST HEAD(, proc) pg members; /* Pointer to pgrp members. (PGL) */
struct session *pg session; /* Pointer to session. (LL) */

pid t pg_id; /* Pgrp id. (static) */

int pg jobc; /* # procs qualifying pgrp for job control (PGL) */

int pg membercnt; /* Number of processes in the pgrocess group (PGL)

int pg refcount; /* number of current iterators (LL) */
unsigned int pg listflags; /* (LL) */
lck mtx t pg mlock; /* mutex lock to protect pgrp */

bi

Definition of session structure can also be retrieved in xnu/bsd/sys/proc_internal.h header file.

Below is the definition of session structure under Mac OS X Snow Leopard.

/*
* One structure allocated per session.
*/
struct session {
int s_count; /* Ref cnt; pgrps in session. (LL) */
struct proc *s leader; /* Session leader. (static) */
struct vnode *s ttyvp; /* Vnode of controlling terminal. (SL) */
int s_ttyvid; /* Vnode id of the controlling terminal (SL) */

struct tty *s ttyp; /* Controlling terminal. (SL + ttyvp != NULL)
pid t s ttypgrpid; /* tty's pgrp id */

pid t s_sid; /* Session ID (static) */

char s _login[MAXLOGNAME]; /* Setlogin () name. (SL) */

int s _flags; /* Session flags (s mlock) */

LIST ENTRY (session) s _hash; /* Hash chain. (LL) */

lck mtx t s_mlock; /* mutex lock to protect session */

int s listflags;

s_login field contains the name of the username in ASCII.

pid

Information Extraction (Also Know As Analysis) | NFI

Above is a sample screenshot of a processes list, mainly executed by nfinfi user around March 2009.

KERNEL EXTENSIONS (ALSO KNOWN As DRIVERS, KERNEL MODULES)

Kernel-Mode, the God Mode, is the most privileged level of an Operating System. Loaded Kernel Extensions can be
retrieved by a global list-head variable, accessible from symbols, called kmod defined by kmod info structure.

next field points to the next kernel extension.
Definition of session structure can also be retrieved in xnu/osfmk/mach/kmod.h h header file.
Below is the definition of kmod info structure under Mac OS X Snow Leopard.

typedef struct kmod info {
struct kmod info *next;
int info version; // version of this structure
int id;
char name [KMOD MAX NAME];
char version[KMOD MAX NAME];
int reference count; // # refs to this
kmod reference t *reference list; // who this refs
vm_address_t address; // starting address
vm_size t size; // total size
vm_size t hdr size; // unwired hdr size
kmod start func t *start;
kmod stop func t *stop;
} kmod info t;

As you can see here we have both kernel extensions image base start and size. Since we have a functional kernel

address space, we can easily extract the image of the kernel extension.

Information Extraction (Also Know As Analysis) | NFI

address size code ::izc nane <version)

Bx226F0000 Bx00083008 BH02008 con.apple d river.iTunesPhoneDriver <1.80D
BxP0enB0N BO89008 con.app i St sz €2.80.8
Bx0B01 BA00 BxPB1ANBA con.app
BxB008CHANE BxBBBENNE con.a pp le.Filesy: 1 >
25 C BxPA002000 BxB8801888 con.osxhook. ke . 3 1.8.8>
HxHHn(1008 BxPR005000 BxB8084888 con.apple. dl‘ iver .ﬂppll {WSer .Bda
BxPAD58008 BxPABVBRANE BxBIEBABBA comn.apple. ystens.autof ¢
BxBAD35008 BxPEN23000 BxBE2280808 comn.apple.driver.AppleHDA <1.4.8a23
BxPACF1000 Bx00841008 Bx808400080 com.apple.driver.DspFunc l,) b <1.8.8a1>
BxB0656000 BxABEV3008 BxBBB02088 con.apple.Dont_Steal (6.8.2>
BxPARA7008 BxBINE6888 con.apple ! J

BxPAAACHAA BxBABEBAEA con. . it .C 0 ("6;?)

q
Bx00A82008 BxBE881888 con. - - 1.6)
con. i (l'h})
- -

Bx00805088 BxH888418688
Bx301 88888 Bx881B78684
Bx8822Da88

AxB0RBERAG @)
0x0001CA08 BxA881Ba6a

con.
comn. 3 S 1.
com. iokit.)NDRU'\nppul t (1.
con. iokit.I0GraphicsFanmily -
BxP00807880 BxH8BR6H888 con.apple . .driver.AppleHDAControlle (1.4.8a23)>
BxA00060080 Bx08085888 con.apple.iokit. DAFani ln/ <1.4. 2
¢ < BxA0009008 xP80B8B88 con.apple.iokit. relivelP (1.
OxB069F000 BxH0003008 BxBE0028088 con.apple.driver. ﬂpplL USBDx,pluv,
OxBBE4F000 Ox00084008 Bx00883088 con.apple r 4 Audio IPCDyiver < l a. ‘1 >
BxBOCDDAGE BxB081 7008 BxB0816088 con.app i it. l OAudioFanily <1.6.4h7)
BxBACDABAA BxARBA3000 HxPBA2888 con.app .0SuKernDSPLib (1.1)
BxB0ACH ARG BxPRNOABAN BxBBBA9888 con.app . r.AppleMCEDyriver (1.1.5h4)
AxB0C?71008 Bx0000AN0E BxBE0A9888 con.apple.dri ACPI_SHC_PlatfornPlugin (3.0.68d411)
OxB0CH3000 BxOABRENNE BxB8088DBAA con.apple o J0PlatfornPluginFanily (3.08.08d4d11)
IxA064D008 BxBA807008 con.app r.ﬂpplt:ﬁﬂ(: 2.
BxPBBBABBE Bx00883 008 con.app driver. ApplelPC (1.
Bx00699008 BxBA803008 con.app driver . AppleUSBHIDMot
IxB0691000 BxPABA30600 B082808 con.app river.AppledHl DMouse
BxP0694008 BxPA005008 BxPN084008 con.apple.i L1ous lﬂ(1 DD)'
BxP0647000 BxB0082000 Bx0O881088 con.apple
BxBBaC4D008 BxNNB4800 BOO30808 con.app i]i'U‘ BC nnp
BxBABD4808 BxB08816008 HE15088 con.app ioki IMultined
BxPABBENAA BxPB016000 Bx08815088 con.apple.iokit. ckCommandsDevi
BxRNABEY00A BxA0005000 BxBE84088 con.apple.iokit. i
BxPRBE300E BxPRBE60AE BxBOBRSH88 con.apple.iokit.
BxBOBABBAE BxPHA0ASB0a ' con.app iokit. , orageF. e
AxAABR14080 BxHB006 880 ‘1(‘1“-1“‘ 998 com.apple.iokit.$ ~Client (2.
BxBBCY 7008 BxHAN05008 HxBABB4888 con.apple.driver ter €2.7.91)

Above is a screenshot of a loaded kext lists.

SYSTEM CALLS

The very first step is to localize the syscall table, called sysent, which is a non accessible variable from symbols.
So using a magic trick we can retrieve its offset through nsysent exported variable which contains the number of
syscall entries.

Under Mac OS X Leopard (10.5), as explained by Jesse D’Aguanno at BH US 2008, we have to add 0x20 to nsysent
offset to obtain the offset of sysent table.

Under Mac OS X Snow Leopard (10.6), we have to proceed with a different methodology. First, we have to retrieve
the value of nsysent variable, then we multiply its value with the size of sysent structure, and then we
subtract this value to nsysent offset to obtain the offset of sysent table.

Definition of sysent structure can also be retrieved in xnu/bsd/sys/sysent.h header file.

Below is the definition of sysent structure under Mac OS X Snow Leopard.

struct sysent { /* system call table */
intl6_t sy narg; /* number of args */
int8 t sy resv; /* reserved */
int8 t sy flags; /* flags */
sy call t *sy call; /* implementing function */

sy munge t *sy arg munge32; /* system call arguments munger for 32-bit
process */

Information Extraction (Also Know As Analysis) | NFI

sy munge t *sy arg munge6d4; /* system call arguments munger for 64-bit
process */
int32 t sy return type; /* system call return types */
uintl6 t sy arg bytes; /* Total size of arguments in bytes for
* 32-bit system calls
*/

offzet
BxBA3987FS
BxBA376F34 _exit
*xBA3 78 B4R _fork
*xBAIYBCAE read
AxB839134C _write
BxBA1E425C _OpEn
BxBA36C7SE _close
BxBA37SER2 _waitd
BxBA3987F5 nosys
AxBB1E4932 llnk
BxABA1ES548
BxBA3987F5 _
BxBA1E3?25 _chdiw
BxBA1E3T723 fohdir
AxBB1 E43ER _mknod
BxBAB1E6FD1 _chmod
BxBA1E74B7 _chown
BxBA37AS2D k
BxBBA1E3
BxBA3907
BxBA37DE3A
BxBA3987F5
BxBA3987F5
BxA837EIZE 5
Ax8 thuld
AxAB37DF21 thFU1d
BxAA3BCRE23 x
BxBA3EBA4E
BxB8381 781

x»BAIBA?DE
BxBA3AFEY3
HJHH3HHLb4

BxBA1ES
Bxﬂﬁ1£§

m,aﬂzsjung
BxBP3I9B7FS
8883 7DE

HfHHJhE4Er

BxBE394912

BxB837DFC?

@xB838FBAG

AxA03907F5

BxBAIR2AV5

BxB837DFB3

ﬂ\ﬂﬁ?ﬁogFH _sigprocmask
get login

>] _setlogin

AxBAISB2AY ct

BxBA38117 gpending

ﬂ\ﬂﬁ?ﬁ1 _"lgalt tack

{ _=ymlink
ﬂ\ﬂﬁlFEH“’ readlink

Above is a picture showing a list of syscalls from sysent table.

Information Extraction (Also Know As Analysis) | NFI

Integrity checks are done if entry value does not give the function name value. It does not sound complicated but
this trick was enough to detect Jesse D’Aguanno Rootkit presented at HAR2009.

THANKS

For help, resources, etc.

e Dino Dai Zovi

e Vincenzo lozzo, Zynamics
e Neil Archibald (nemo)

e Ruud van Baar, NFI

e Feico Dillema, NFI

e Raoul Bhoedjang, NFI

Thanks | NFI

