
Malware Analysis
for the Enterprise

 jason ross

Table of Contents
Introduction ..

How Does Malware Analysis Help? ...

The Need For Analysis ...

Times have changed (it’s a business, not a kiddie) ...

The signature arms race ..

Where Does Malware Analysis Fit In? ...

Infection is an incident ..

How Does Malware Today Work? ...

Droppers and Downloaders and Rootkits Oh My! ..

How can you say you’re clean if you can’t trust the OS? ...

Playing With Fire (How To Analyze Malware) ..

Static analysis ...

Runtime analysis ...

What is a sandnet? ..

Virtual Machines vs. Bare Metal ..

Smart malware authors check for VM ..

Dumb malware authors also check for VM ...

Setting Up The Sandnet ..

Network configuration ..

Monitoring and logging traffic ..

Services Host Setup ..

OS Configuration ..

DNS Service (ISC Bind 9) ..

Web Service (Apache 2) ...

SMTP Service (Postfix) ..

Generic Listener Service (Netcat) ...

A quick note about javascript obfuscation ..

Victim Host Setup ..

OS Configuration ..

Analysis Software ...

Conclusion ..

Appendix A: Online Analysis Labs ..

Appendix B: Malware Sample Resources Online ...

Introduction
In a typical organization, an attack from malicious software (known as malware) is not likely to
go completely unnoticed. Detection of an attack may come through one or more technologies
such as antivirus software, intrusion detection systems, or it may come from systems compliance
monitoring.

Unfortunately, detection of the attack is no longer sufficient to identify the full risk posed by
malware. Often, detection occurs after the host has already been compromised. As malware
evolves and grows increasingly complex, it is utilizing self-defense mechanisms such as root kit
technologies to hide processes from the kernel, disable antivirus software, and block access to
security vendor websites and operating system update information.

Faced with these threats, once a host’s integrity becomes compromised a crucial part of the
incident response process is to determine what activity the malicious code is engaged in, and
specifically whether any data may have been compromised and to where it may have been sent.

How Does Malware Analysis Help?

The Need For Analysis
The only way to really determine what a piece of malicious software is doing is to analyze it. The
anti-virus industry has researchers who do this as a key part of their business. In the past this was
sufficient, because the motivating factor behind viruses was largely fame. Because of this, viruses
were generally written by single individuals, and were designed to infect as many machines as
possible. As a result, once a researcher was made aware of a threat, they could analyze it and
create signatures which could be pushed out by the anti-virus vendor, to protect everyone in the
same fashion as they had been infected, en masse.

Additionally, at this time malware was generally not very complex, in part because the authors
didn’t have the resources needed to create very complicated programs. This relative simplicity
meant that an infected host could usually be cleaned with a high chance of success. While there
were some truly devastating viruses, they were not very common.

Times have changed (it’s a business, not a kiddie)
Where malware was once being designed for fun, research, fame, or even to promote socio-
economic activist ideals, today creating and managing malicious software has become a solid
business model for criminals, and it is part of a robust underground economy.

Because it’s a business product, malware today has completely different goals than in the past. To
meet these new goals, the complexity of the code, as well as the infection process, has increased
substantially. Additionally, we are seeing the delivery pattern of malware change to meet the
needs of the clients being served by the malware industry. For example, rather than infecting as
many computers as possible, a piece of malware may be limited to perhaps a few selected
computers within a specific organization. At the same time, another piece of malware may be
served via a legitimate web site which has been compromised1, to as many people as visit the site.
These differences in methods exist to meet the needs of clients with different goals.

Because of the shift in the way malware is being developed and deployed, the methods used to
mitigate the threat of malicious software in the past are no longer effective. Malcode which
affects an organization may exist solely within that organization. It is not effective in cost, nor
codebase, for the anti-virus industry to manage a vast number of “one off” signatures, yet this is
what is being done. Further, as the industry expands and resources are added which are needed to
compete with the business of malware creation and distribution, problems arise as a result of the
fact that there are no standards for malware management. For example, when an organization
becomes aware of the fact that a host on their network has been compromised by a piece of
malware, it is often necessary for them to learn more about what the malware does, and how to
remove it from the infected host.

This process is made very difficult and confusing when each vendor has differing information
about the malware. Adding to the challenge is the fact that often the same piece of malicious
software will have multiple names, as each vendor picks their own way to uniquely identify it.

The signature arms race
Anti-virus products work by creating a binary signature of a piece of malicious software. If a file
on the system matches the signature, it is determined to contain that malicious software, and is
dealt with according to the policies that have been set up either by the vendor, or the organization
deploying the product. This works reasonably well when the quantity of unique malicious
software is relatively small; however, this method does not scale well. As the number of unique

1 Websense released their 2009 First Quarter State of the Internet report with dismal statistics of mass ownage. They reported a 671%
growth in malicious web sites in the past year, 77% of which were legitimate sites that had been compromised.(Websense Security
Labs Report - State of Internet Security Q1 - Q2 2009)

http://community.websense.com/blogs/websense-features/archive/2009/09/15/websense-security-labs-report-state-of-internet-security-q1-q2-2009.aspx
http://community.websense.com/blogs/websense-features/archive/2009/09/15/websense-security-labs-report-state-of-internet-security-q1-q2-2009.aspx

samples grows, managing the signatures required to identify them becomes problematic. Further,
if the number of unique samples increases at a significant rate, the amount of time a particular
piece of malcode is able to remain undetected increases as well, as the resources required to
develop new signatures often do not increase to keep up with the influx. This leads to what is
essentially a signature arms race, where the authors of malware take advantage of the time
between their software being deployed, and the time it takes the anti-virus industry to analyze it
and develop a signature pattern. In an effort to come out on top of this race, the industry has
developed heuristic detection, which is used to categorize and group classes of malicious activity.
While this does help, it is not sufficient to catch all malicious activity. Further, to prevent
heuristics from working effectively, malware is deploying in multiple stages. Since heuristics
watches for specific types of activity being performed by an executable, the compromise has been
broken down into several steps, making it possible for a machine to be at least partially
compromised without the anti-virus product detecting it. Apart from heuristics, many anti-virus
products have taken to identifying any software which is packed as being malicious. Since many
legitimate software packages also use packers to decrease the size of their programs, this fosters
complacency in the end user as the number of false positives increases.

 Further complicating this situation is the fact that since malware has become a business product,
it now comes with a support model. Often included in this support is a guarantee that a given
piece of malware will remain undetectable. Should an anti-virus product create a signature to
detect the malware successfully, the author will alter the binary such that it no longer matches the
signature – for the life of the support plan. This is accomplished in a number of ways:

• creating routines which encrypt the code using strong cryptographic ciphers, and
randomized keys

• completely altering the codebase itself in an automated fashion by using polymorphic
routines

• packing2 and compressing the executables

Each of the above methods alters the resulting binary in ways that make it difficult to analyze, let
alone create a single signature pattern for it.

As a result researchers are flooded with samples which may all be the same piece of malcode, but
because each one has different properties, they require different signatures. Online resources such
as Virus Total assist malware authors in this process by allowing them to easily determine the
detection rate of their malicious binary.

For all of these reasons, there is a need for malware analysis to become part of an organization’s
standard security practice3, and just not something that is relegated to highly skilled technicians
employed by the anti-virus industry and researchers alone.

Where Does Malware Analysis Fit In?
If analyzing malware is to be an essential component of an organization’s security posture, it’s
important to understand how it relates to the process and policies already in place at that
organization.

Infection is an incident
Because malware has been part of the computer security threat landscape for so long, and due to
the media attention given to high profile attacks, viruses have become common. As a result,
malware is often not seen for the serious risk it poses. The quirky names often given to viruses,
(such as Slammer, Melissa, or of course I Love You), exacerbate this tendency to trivialize an

2 In 2007, Panda software released a study which stated that 78% of of new malware at that time used some form of file packer
(Panda Software: Packing malware, growing threat 6/5/2007)
3 This need is reflected in job postings. Monster.com shows 86 positions open as of October 21, 2009 that contain malware as a
keyword hit, and 27 which specifically are looking for malware analysis. The majority of these positions are for industries outside of
the information technology sector.

http://www.pandasecurity.com/homeusers/media/press-releases/viewnews?noticia=8612

infected host as a nuisance rather than a true security threat. Thus, despite the fact that the
infection process and purpose of malware have significantly changed, the response to infection
and compromise has essentially remained the same: identify, create a signature, and clean. As a
result, infection handling is generally left out of the incident response policies. This is a mistake.

Malware is typically deployed in a multi-stage process, the end result of which is frequently
complete control of the victim host by an attacker. This means that each alert from an anti-virus
product could in fact be notifying you of the fact that you’ve now got a hostile host on your
network. Worse, the attacker using the host is using whatever credentials are available, which
means the theoretical “malicious insider” problem has just become real, only the insider isn’t Bob
from Accounting, it’s a hostile foreign entity that now owns Bob’s computer and is sending data
from it to some other compromised host they control over an encrypted tunnel. Accordingly, how
an organization deals with infected hosts has a number of implications. For example, if the
infected host (or the end user the host belongs to) accesses sensitive information, there could be a
number of legal and compliance problems that arise, including notification to customers that their
data may have been compromised4.

In light of this, it makes sense that malware which is discovered on the organization’s network
needs to be analyzed to minimally determine the following:

• Was the host successfully compromised?

• If it was, how was it compromised?

• What occurred after the compromise?

• Was any data taken?

• If data was taken, where was it sent?

• Were any other hosts compromised as well?

These are all questions that an organization needs to be able to answer so they can determine how
to form a proper response to the incident. Many of the answers can be obtained by analyzing the
malware. As such, malware analysis belongs in an organization’s incident response policies and
procedures.

4 Section 13402 of the HITECH Act requires HIPAA covered entities to “notify affected individuals… following the discovery of a
breach of unsecured protected health information”. See the HITECH Act Breach Notification Guidance. If an infected host under the
control of a botherder accesses such information, it should rightly be considered a breach.

http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/guidance_breachnotice.html

How Does Malware Today Work?
In April 2009, FireEye published5 an excellent report which showed (among other things) the
inter-relationship between malware families and various botnets (see Figure 2: Complicated Inter-
relationship of Botnet Webs.)

The report demonstrated in a very clear way that malware is extremely complex and inter-related,
as the image in Figure 2: Complicated Inter-relationship of Botnet Webs demonstrates.

Based on information in the report, it is apparent that malcode authors and botherders are
collaborating with each other. Because of this, thinking of an infected host in terms of single
virus infections is not accurate, and does not reflect the complexity of the true landscape.

Figure 2: Complicated Inter-relationship of Botnet Webs

Droppers and Downloaders and Rootkits Oh My!
One of the more common methods being used to spread malicious software is compromised web
sites. A link to the malware is placed on websites which are either owned by the attackers, or are
compromised legitimate sites. These executables are generally not detectable by anti-virus
software, and have no other purpose than to get loaded onto the victim and begin the second wave
of attack, which generally consists of using HTTP to retrieve additional malicious software.
The second stage malware handles things like disabling anti-virus software, manipulating host
based firewall rule sets, installing root kits to hide malicious activity from the OS, and in some
cases inserting code into the boot sector of the hard drive to allow it to remain in place even if the

5 FireEye blog post: BotnetWeb: A Collection of Heterogeneous Botnets..

http://blog.fireeye.com/research/2009/04/botnetweb.html

OS is cleaned.

It's increasingly the case that more than one type of virus is utilized at this step in an effort to
ensure successful compromise. If the anti-virus software triggers, it is usually at this point,
however, by this time it is already too late, as the host has already been compromised
successfully. While the anti-virus may have caught one of the new malware installation attempts,
it is quite likely that there were others.

How can you say you’re clean if you can’t trust the OS?
If the malware was successful in root kit installation, any investigative work being done at this
stage is useless, as any information reported by the operating system kernel is suspect. Often
security professionals will respond to an anti-virus alert that indicates a host was compromised by
doing the following:

• Login to the host to investigate
• Viewing the processes running on the system
• Check open network connections

If “nothing unusual” is found, often the decision is made that the host is clean, and the anti-virus
software did its job. The problem with this is that once a rootkit is installed, nothing the kernel
tells you can be trusted. The author of the malware can use the rootkit technology to hide
processes, registry entries, network connections, directories, etc.

For this reason it is becoming the recommended practice that if a host becomes infected, it should
be wiped and reinstalled from scratch. However, even this is not enough, as the use of boot sector
rootkits is growing. To ensure the system is no longer infected, it is necessary to format the boot
sector of the hard drive as well.

Playing With Fire (How To Analyze Malware)
There are two techniques which can be used to perform an analysis on a piece of software to
understand what it does:

 Static (Source Code) Analysis – Analyzing the source of the malware. Typically this
involves reverse engineering the binary executable. This can be problematic in some
countries due to overly restrictive laws regarding software.

 Runtime (Behavioural) Analysis - Observation of network traffic and any changes made to
the operating system environment as the executable runs. This method is riskier than static
analysis due to the fact that the host is intentionally compromised during the process.

Static analysis

The first method, known as static analysis, requires special skill sets, including an extensive
understanding of assembler (usually for the x86 chipset), software debugging techniques, and
increasingly a solid understanding of encryption methods. Typically this level of skill means
hiring a specialist, so reversing malware has generally been left to the anti-virus companies and
various security research labs. As malware becomes increasingly advanced however, industries
with high need for security (such as the aerospace or pharmaceutical industries for example) are
beginning to employ in-house researchers with these skills.

Runtime analysis

The second technique, referred to as run time analysis, has a significantly lower cost associated
with it since it does not specifically require a need for a specialist. This process involves gaining
a solid understanding of what a piece of software does from simply observing the system prior to,
during, and after it has been successfully run. The experience needed to perform these tasks may
already be available within the IT staff of an organization. It is for this type of analysis that a
sandnet is used.

What is a sandnet?
Many organizations are familiar with the concept of a sandbox, or testing, host. Such systems are
often used to isolate new code, server software, or even new operating systems, from the
production environment or network. As its name implies, a sandnet expands this concept beyond
a single host, to an entire network dedicated to testing and analysis. Specifically, a sandnet used
to analyze malicious software provides a virtual Internet, within which all traffic generated and
any actions taken by the malware sample that is undergoing analysis can be logged and
examined.

Virtual Machines vs. Bare Metal

The first factor an organization must consider when setting up a sandnet is whether to use
physical or virtual machines for the purpose. Many features of virtualized environments are ideal
for the tasks a sandnet requires, because the analyst is able to use technologies such as cloning to
easily create victim and services hosts as needed. Further, with the use of snapshots, it is a fairly
simple process to boot up a clean virtual host, analyze a given piece of malware, and then restore
the environment to its initial state once the evaluation has been completed. Additionally,
depending on the virtual machine technology being used, there may be other features available
which are useful for analysis, some of which are discussed below. Given these advantages, it
seems a natural choice to use a virtualized environment to perform malware analysis.

There are a few reasons that a virtual host may be undesirable as the analysis platform however,
one of the most important being that the malware being analyzed may be checking to see if it is
being run in a virtual machine.

Smart malware authors check for VM

A key factor to consider when determining whether to use a virtual host or a bare metal machine
as a victim is the fact that malware is increasingly utilizing mechanisms to determine whether or
not it is being run inside a virtual machine. There are a number of techniques that can be used to
do this. These range from something as simple as checking to see if the hard drive volume name,
or network card MAC matches default virtual machine settings, to more esoteric solutions6

involving differences in the way the kernel handles functions inside a virtual environment, etc.

Dumb malware authors also check for VM

As the malicious software industry grows, a number of design tools have been created to assist in
creating malware. Some of these are quite advanced, and rival (or even exceed at times)
commercial software design tools in the quality of the user interface. This means that enabling a
malicious software executable to perform virtual machine detection may literally be as easy as
clicking a checkbox (see Figure 2: SharK 3.1 Anti-Debugging Features below).

Figure 2: SharK 3.1 Anti-Debugging Features

These malware builder kits are not terribly difficult to find on the internet, and can often be
acquired freely. As a result, malware authors who are not highly skilled are able to create
executables with advanced features.

Despite the fact that malware checking for virtualized environments, it is still very often the case
that an organization prefers to use a VM for analyzing malware, usually due to the cost benefit
this strategy provides. As a result, the remainder of this document will focus on using a virtual
environment for analysis. Some of the processes used herein may differ slightly for a bare metal
lab, but in general they are largely the same. Because Sun’s VirtualBox product often escapes
notice from malware authors, it was chosen as the platform to be used.

Setting Up The Sandnet
At a minimum, a sandnet should have two hosts, one to provide services such as DNS, HTTP,
and monitoring capabilities, and one to serve as a victim host, upon which the malware sample
will be run.

For the purposes of this document, the services host was set up with the Debian distribution of

6 For examples of these refer to Joanna Rutkowska’s RedPill, and Tobias Klein’s Scoopy NG

http://www.trapkit.de/research/vmm/scoopyng/index.html
http://www.invisiblethings.org/papers/redpill.html

Linux. The victim host OS is Windows XP Service Pack 3. No patches other than the service
pack were installed.

The output below shows the result of list listing the virtual machines which have been set up. The
services host has been named linux. The victim host has been named winxp_sp3_01.

> VBoxManage list vms
VirtualBox Command Line Management Interface Version 3.0.8
(C) 2005-2009 Sun Microsystems, Inc.
All rights reserved.

"linux" {ad59f194-585e-49c5-a54c-5e92322b1188}
"winxp_sp3_01" {7a554f4e-6aea-42f1-a3c5-488d43f161ff}

Network configuration
The network traffic generated by machines in the sandnet should isolated from any production
network, including the public Internet. In a bare metal lab, this could be accomplished with the
use of firewalls, or simply by not connecting up the hub, switch, or router used by the lab to any
other equipment.

In the virtual environment, each machine should be configured to use the Internal Network
option. This can be verified by using the VBoxManage utility as follows: (some output has been
removed to preserve clarity):

>VBoxManage showvminfo winxp_sp3_01

Name: winxp_sp3_01
Guest OS: Windows XP
UUID: 7a554f4e-6aea-42f1-a3c5-488d43f161ff
Memory size: 512MB
VRAM size: 12MB
Number of CPUs: 1
NIC 1: MAC: 080027D32767, Attachment: Internal Network
'intnet',

> VBoxManage showvminfo linux

Name: linux
Guest OS: Debian
UUID: ad59f194-585e-49c5-a54c-5e92322b1188
Memory size: 256MB
VRAM size: 12MB
Number of CPUs: 1
NIC 1: MAC: 080027355D36, Attachment: Internal Network
'intnet',

Note that the Internal Network has been assigned the name ‘intnet’.

If you wish to enable DHCP for the sandnet, you can use the VBoxManage tool to set this up.
When you do this, you’ll need to specify the network name you want the DHCP server to respond
to (this can be determined using the showvminfo as demonstrated above), an IP address for the
server, as well as the lower and upper IP addresses in the DHCP pool:

> VBoxManage dhcpserver add --netname intnet --ip 192.168.3.1
--netmask 255.255.255.0 --lowerip 192.168.3.100 --upperip
192.168.3.250 --enable

Monitoring and logging traffic
The VirtualBox VM environment has the capability to dump all network traffic to and from a
given VM into a pcap file. This is extremely useful when analyzing malware, as using other
means to capture the traffic from a virtual machine can be problematic. To enable this feature,
perform the following steps:

> VBoxManage modifyvm vmname –nictraceNIC# on –nictracefileNIC#
filename.pcap

Note that there is no space between the –nictrace and –nictracefile command the the number of
the NIC you wish to use. For example, to capture the traffic to and from the linux virtual machine
using the first network adapter (which shows up as “NIC 1” when running the showvminfo
command) the following command could be used:

> VBoxManage modifyvm linux –nictrace1 on –nictracefile1
“C:\Users\Test\linux.pcap”

Once you’ve finished the analysis, you can disable the trace option by using the same command
and specifying ‘off’:

> VBoxManage modifyvm linux –nictrace1 off –nictracefile1
“C:\Users\Test\linux.pcap”

Services Host Setup

OS Configuration

For the services host, the Debian distribution of Linux was chosen. The system was installed
using the netinst7 image, and using only the ‘standard system’ package group during the
installation process. Once the system installation is complete, some additional software should be
installed:

apt-get install php5 bind9 openssh-server tcpdump tshark postfix
build-essential

When postfix asks about the type of site, pick “Internet Site” and accept the default mail name
(which will be the hostname selected during the OS install).

DNS Service (ISC Bind 9)

BIND has been configured such that it is the SOA for every domain request that it receives, and it
will reply to any requests with the IP address of the services host. It is further setup to provide the
address of the services host as the MX for any domain that is requested. This configuration allows
any DNS calls being made by the victim hosts to be observed, and any software on the victims
which tries to communicate with the internet is instead directed to the services host, so that the
content of the communication can be analyzed. There are a number of files which must be
configured to set this up.

named.conf

include "/etc/bind/named.conf.options";

key "dnskey" {
 algorithm hmac-md5;
 secret "hash";
};

controls {
 inet * allow { 127.0.0.1; } keys { "dnskey"; };
};

zone "." IN {
 type master;
 file "/etc/bind/db.wildcard";
};

named.conf.options

options {
 directory "/var/cache/bind";
 allow-transfer { none; };
 logging {
 channel query_log {
 severity info;
 print-time yes;

7 Available at http://www.debian.org/distrib/netinst

http://www.debian.org/distrib/netinst

 file "query.log" versions 5 size 50M;
 };
 category queries {
 query_log;
 };
 };
 listen-on-v6 { any; };
};

wildcard zone configuration (db.wildcard)

$TTL 604800

@ IN SOA localhost. root.localhost. (

 2009102201 ; serial

 604800 ; refresh

 86400 ; retry

 2419200 ; expire

 604800) ; negative cache ttl

@ IN NS localhost.

* IN MX 10 192.168.3.101

* IN A 192.168.3.101

Web Service (Apache 2)

When using Apache to analyze malware, it is useful to have a more robust logging mechanism
than that which is used by default. Fortunately, Apache2 comes with a few options that fit the
need, one of which is mod_log_forensic. This module comes preinstalled in Debian, but it must
be enabled. This can be done using the a2enmod utility as follows:

a2enmod log_forensic

To configure the web server up such that it utilizes the functionality of this module, the following
line must be added to the server configuration file8:

ForensicLog /var/log/apache2/forensic_log

Once the module is enabled and configured, Apache can be restarted to activate the changes:

apache2ctl reload

8 This can be found in /etc/apache2/sites-available/default on Debian

Now when an HTTP request is made to the web server, detailed information about that request
will be logged to the file specified in the server configuration. An example of the data that is
recorded can be seen below:

+2021:4adf8568:0|GET / HTTP/1.1|Accept:*/*|Accept-Language:en-us|
Accept-Encoding:gzip, deflate|User-Agent:Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.1; SV1)|Host:192.168.3.101|Connection:Keep-
Alive|Cache-Control:no-cache
-2021:4adf8568:0

SMTP Service (Postfix)

Edit /etc/postfix/main.cf to setup virtual mail hosting by appending the following to the end of the
file:

virtual_alias_maps = hash:/etc/postfix/vmail_aliases
virtual_mailbox_domains = *
virtual_mailbox_base = /var/spool/vmail
virtual_mailbox_maps = hash:/etc/postfix/vmail_maps
virtual_minimum_uid = 500
virtual_uid_maps = static:500
virtual_gid_maps = static:500

Obtain the nocando shell from the Team Cymru website (this shell is “a denial shell that
provides logging when users with this shell attempt to gain access”). The source code will need to
be compiled, and the resulting binary should be installed into a system directory:

cd /usr/local/src/
wget http://www.cymru.com/Tools/nocando-1.4.tar.gz
tar zxvf nocando-1.4.tar.gz
cd nocando-1.4
make
cp /nocando /usr/local/bin/

Create a virtual email user and group (vmail in the examples below. The UID and GID need to
match the settings used in the Postfix main.cf):

groupadd –g 500 vmail
useradd –g 500 –u 500 –s /usr/local/bin/nocando –d /var/spool/vmail
vmail

Create the mail spool for the virtual mail domains and set the permissions on the vmail directory
structure such that the vmail user has access to the directories and files::

mkdir –p /var/spool/vmail/spamcan
chown –R 500:500 /var/spool/vmail
chmod 0755 /var/spool/vmail
chmod 2750 /var/spool/vmail/spamcan

Create the virtual mail mappings and load them into postfix editing /etc/postfix/vmail_maps to
include the following:

http://www.cymru.com/Tools/

@ spamcan/

Create an empty virtual alias map, then generate the postfix hashes for each of the virtual
mapping files. Once that’s done, reload the postfix configuration:

touch /etc/postfix/vmail_aliases
postmap /etc/postfix/vmail_aliases
postmap /etc/postfix/vmail_maps
postfix reload

Generic Listener Service (Netcat)

If a piece of malware is attempting to send traffic of an unknown nature to a remote host, it may
be useful to capture that information by setting up netcat to listen on the port being used by the
malware and dumping any incoming data to a text file. For example, to set up a netcat listener on
TCP port 8080 and log any input received to a file, the following command could be used:

netcat –nvlp 8080 –o tcp_8080.txt

An example of the contents of the tcp_8080.txt file after receiving a request from Internet
Explorer on the victim host to the listening netcat service is shown below:

< 00000000 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 0d 0a # GET /
HTTP/1.1..
< 00000010 41 63 63 65 70 74 3a 20 69 6d 61 67 65 2f 67 69 # Accept:
image/gi
< 00000020 66 2c 20 69 6d 61 67 65 2f 78 2d 78 62 69 74 6d # f,
image/x-xbitm
< 00000030 61 70 2c 20 69 6d 61 67 65 2f 6a 70 65 67 2c 20 # ap,
image/jpeg,
< 00000040 69 6d 61 67 65 2f 70 6a 70 65 67 2c 20 61 70 70 #
image/pjpeg, app
< 00000050 6c 69 63 61 74 69 6f 6e 2f 78 2d 73 68 6f 63 6b #
lication/x-shock
< 00000060 77 61 76 65 2d 66 6c 61 73 68 2c 20 2a 2f 2a 0d # wave-
flash, */*.
< 00000070 0a 41 63 63 65 70 74 2d 4c 61 6e 67 75 61 67 65 # .Accept-
Language
< 00000080 3a 20 65 6e 2d 75 73 0d 0a 41 63 63 65 70 74 2d # : en-
us..Accept-
< 00000090 45 6e 63 6f 64 69 6e 67 3a 20 67 7a 69 70 2c 20 #
Encoding: gzip,
< 000000a0 64 65 66 6c 61 74 65 0d 0a 55 73 65 72 2d 41 67 #
deflate..User-Ag
< 000000b0 65 6e 74 3a 20 4d 6f 7a 69 6c 6c 61 2f 34 2e 30 # ent:
Mozilla/4.0
< 000000c0 20 28 63 6f 6d 70 61 74 69 62 6c 65 3b 20 4d 53 #
(compatible; MS
< 000000d0 49 45 20 36 2e 30 3b 20 57 69 6e 64 6f 77 73 20 # IE 6.0;
Windows
< 000000e0 4e 54 20 35 2e 31 3b 20 53 56 31 29 0d 0a 48 6f # NT 5.1;
SV1)..Ho

< 000000f0 73 74 3a 20 31 39 32 2e 31 36 38 2e 33 2e 31 30 # st:
192.168.3.10
< 00000100 31 3a 38 30 38 30 0d 0a 43 6f 6e 6e 65 63 74 69 #
1:8080..Connecti
< 00000110 6f 6e 3a 20 4b 65 65 70 2d 41 6c 69 76 65 0d 0a # on:
Keep-Alive..
< 00000120 0d 0a # ..

If the malware is using UDP for communication, you can accommodate that by using the –u
option netcat provides.

A quick note about javascript obfuscation

When analyzing malware, it is likely that an analyst will discover javascript code which has been
obfuscated. Before further analysis can be performed, it becomes necessary to de-obfuscate this
code. To perform the task, there are a couple different methods which can be used9, one fairly
easy and quite effective way to do this is to use the SpiderMonkey javascript engine from
Mozilla. Didier Stevens, a respected malware researcher, has added some functionality to the
main codebase which is particularly handy for malware analysis10.

Due to the growing number of malware samples which include javascript (examples could be
drive-by downloads injected into a web site, or malicious code that has been added to an Adobe
PDF document), it is a good idea for an organization wishing to perform malware analysis to
become familiar with this process. However, because this topic strays from run-time analysis and
begins to address source code analysis and reverse engineering, it is beyond the scope of this
document to provide coverage of how to perform these tasks.

9 A very nice summary on this process can be found in the Decoding Javascript Roundup SANS ISC diary entry.

10 See Didier's blog post for specific information on the changes he made, as well as the source code.

http://www.mozilla.org/js/spidermonkey/
http://blog.didierstevens.com/programs/spidermonkey/
http://isc.sans.org/diary.html?storyid=2268

Victim Host Setup

OS Configuration

When it comes to setting up a victim host to analyze malware, there is a nearly infinite number of
configuration choices. However, when the goal is to determine the effect a given piece of
malicious software has to an organization, it makes sense that the victim machine should emulate
as closely as possible the machine upon which the malware was discovered.

Analysis Software

To perform the run time analysis of the malware, it will be necessary to install a wide range of
tools and applications. The ones that will be useful differ based on what the malware being
analyzed does. Some may be rendered useless as the malware attempts to disable security
software. A brief list of some of the more useful software is presented below. Where possible, the
description of the tool is taken directly from the website the tool is located at:

Name Description Website

AutoRuns This utility, which has the most comprehensive
knowledge of auto-starting locations of any
startup monitor, shows you what programs are
configured to run during system bootup or
login, and shows you the entries in the order
Windows processes them.

http://technet.microsoft.com/
en-
us/sysinternals/bb963902.as
px

BinText A small, very fast and powerful text extractor
that will be of particular interest to
programmers. It can extract text from any kind
of file and includes the ability to find plain
ASCII text, Unicode (double byte ANSI) text
and Resource strings, providing useful
information for each item in the optional
"advanced" view mode.

http://www.foundstone.com/
us/resources/proddesc/binte
xt.htm

CaptureBat Capture BAT is a behavioral analysis tool of
applications for the Win32 operating system
family. Capture BAT is able to monitor the
state of a system during the execution of
applications and processing of documents,
which provides an analyst with insights on how
the software operates even if no source code
is available

https://www.honeynet.org/no
de/315

GMER GMER is an application that detects and
removes rootkits .

http://www.gmer.net

IceSword IceSword has a Windows Explorer-like
interface but displays hidden processes and
resources that Windows Explorer would never
show. It isn't a "click-here-to-delete-rootkits"
product but a sophisticated discovery tool that
can protect against sinister rootkits if used
before they infect a machine.

http://www.antirootkit.com/s
oftware/IceSword.htm

LordPE LordPE is a tool e.g. for system programmers
which is able to edit/view many parts of PE
(Portable Executable) files, dump them from
memory, optimize them, validate, analyze, edit,
…

http://www.woodmann.net/c
ollaborative/tools/index.php/
LordPE

Malcode Analyst Pack The Malcode Analyst Pack contains a series of
utilities that were found to be necessary tools
while doing rapid malcode analysis.

http://labs.idefense.com/soft
ware/malcode.php

http://labs.idefense.com/software/malcode.php
http://labs.idefense.com/software/malcode.php
http://www.woodmann.net/collaborative/tools/index.php/LordPE
http://www.woodmann.net/collaborative/tools/index.php/LordPE
http://www.woodmann.net/collaborative/tools/index.php/LordPE
http://www.antirootkit.com/software/IceSword.htm
http://www.antirootkit.com/software/IceSword.htm
http://www.gmer.net/
https://www.honeynet.org/node/315
https://www.honeynet.org/node/315
http://www.foundstone.com/us/resources/proddesc/bintext.htm
http://www.foundstone.com/us/resources/proddesc/bintext.htm
http://www.foundstone.com/us/resources/proddesc/bintext.htm
http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx
http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx
http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

Name Description Website

Included in this package are:

- 4 explorer shell extensions

- manual TCP Client for probing functionality.

- mail server capture pot

- spoofs dns responses to controlled ip's

- HTTP, IRC, and DNS sniffer

- Shellcode research and analysis application

- aids in quick RE of packed applications

- embeds multiple shellcode formats in exe
husk

- detect hidden processes

MalZilla Web pages that contain exploits often use a
series of redirects and obfuscated code to
make it more difficult for somebody to follow.
MalZilla is a useful program for use in
exploring malicious pages. It allows you to
choose your own user agent and referrer, and
has the ability to use proxies. It shows you the
full source of webpages and all the HTTP
headers. It gives you various decoders to try
and deobfuscate javascript aswell.

http://malzilla.sourceforge.n
et

PEID PEiD detects most common packers, cryptors
and compilers for PE files. It can currently
detect more than 600 different signatures in
PE files.

http://www.peid.info

RegShot Regshot is an open-source(GPL) registry
compare utility that allows you to quickly take a
snapshot of your registry and then compare it
with a second one - done after doing system
changes or installing a new software product.

http://regshot.sourceforge.n
et

Strings Working on NT and Win2K means that
executables and object files will many times
have embedded UNICODE strings that you
cannot easily see with a standard ASCII
strings or grep programs. So we decided to roll
our own. Strings just scans the file you pass it
for UNICODE (or ASCII) strings of a default
length of 3 or more UNICODE (or ASCII)
characters. Note that it works under Windows
95 as well.

http://technet.microsoft.com/
en-
us/sysinternals/bb897439.as
px

Spider Monkey SpiderMonkey is the code-name for the
Mozilla's C implementation of JavaScript.

http://www.mozilla.org/js/spi
dermonkey/ (see also:
http://blog.didierstevens.com
/programs/spidermonkey/ for
a malware analysis specific
implementation)

TDIMon With free TDIMon you can monitor the entire
TCP and UDP activity on your computer.

http://download.chip.eu/en/T
DIMon-1.01_163195.html

Whats Running What's Running is a product that gives you an
inside look into your Windows 2000/XP/2003
system.

Explore processes, services, modules, IP-
connections, drivers and much more through a
simple to use application. Find out important

http://www.whatsrunning.net

http://www.whatsrunning.net/
http://download.chip.eu/en/TDIMon-1.01_163195.html
http://download.chip.eu/en/TDIMon-1.01_163195.html
http://blog.didierstevens.com/programs/spidermonkey/
http://blog.didierstevens.com/programs/spidermonkey/
http://www.mozilla.org/js/spidermonkey/
http://www.mozilla.org/js/spidermonkey/
http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx
http://regshot.sourceforge.net/
http://regshot.sourceforge.net/
http://www.peid.info/
http://malzilla.sourceforge.net/
http://malzilla.sourceforge.net/

Name Description Website

information such as what modules are involved
in a specific process.

WireShark Wireshark is an award-winning network
protocol analyzer developed by an
international team of experts.

http://www.wireshark.org

http://www.wireshark.org/

Conclusion
When a host’s integrity has been compromised, it is absolutely essential that an organization be
able to determine what activity the malicious code is engaged in and whether any data may have
been compromised. It is only by obtaining that information that an accurate understanding of the
risk posed by the compromise can be had. Once that risk is understood, a proper response to the
incident can be provided.

Appendix A: Online Analysis Labs
Name Description Website

Anubis Anubis is a service for analyzing malware.
Submit your Windows executable and receive
an analysis report telling you what it does.
Alternatively, submit a suspicious URL and
receive a report that shows you all the
activities of the Internet Explorer process when
visiting this URL.

http://anubis.iseclab.org/

Norman SandBox Norman has a tool that allows free uploads of
program files that you suspect are malicious or
infected by malicious components, and
provides instant analysis, with the result also
sent to you by email.

http://www.norman.com/sec
urity_center/security_tools/

Virus Total Virustotal is a service that analyzes suspicious
files and facilitates the quick detection of
viruses, worms, trojans, and all kinds of
malware detected by antivirus engines.

http://www.virustotal.com/

http://www.virustotal.com/
http://www.norman.com/security_center/security_tools/
http://www.norman.com/security_center/security_tools/
http://anubis.iseclab.org/

Appendix B: Malware Sample Resources Online
Name Description Website

Offensive Computing An online repository of malware, and forums
related to research and analysis of malicious
software.

http://offensivecomputing.ne
t

http://offensivecomputing.net/
http://offensivecomputing.net/

	Introduction
	How Does Malware Analysis Help?
	The Need For Analysis
	Times have changed (it’s a business, not a kiddie)
	The signature arms race

	Where Does Malware Analysis Fit In?
	Infection is an incident

	How Does Malware Today Work?
	Droppers and Downloaders and Rootkits Oh My!
	How can you say you’re clean if you can’t trust the OS?

	Playing With Fire (How To Analyze Malware)
	Static analysis
	Runtime analysis
	What is a sandnet?
	Virtual Machines vs. Bare Metal
	Smart malware authors check for VM
	Dumb malware authors also check for VM

	Setting Up The Sandnet
	Network configuration
	Monitoring and logging traffic
	Services Host Setup
	OS Configuration
	DNS Service (ISC Bind 9)
	named.conf
	named.conf.options
	wildcard zone configuration (db.wildcard)

	Web Service (Apache 2)
	SMTP Service (Postfix)
	Generic Listener Service (Netcat)
	A quick note about javascript obfuscation

	Victim Host Setup
	OS Configuration
	Analysis Software

	Conclusion
	Appendix A: Online Analysis Labs
	Appendix B: Malware Sample Resources Online

