
Wireless security isn't dead, attacking clients with MSF 
 
Abstract 
 
 Security has been an issue on wireless networks since their inception, gradually 
moving from insecure open networks to insecure WEP networks to more secure WPA 
and WPA2 networks.  At this point, enterprise-level wireless network security is well 
understood, however client security in an environment where users are free to take 
systems from a secure network to an insecure network remains a significant and under-
explored risk. 
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Overview of 802.11 
 
802.11 networks are defined by several basic packet types: 
 
1. Data frames, which contain the actual data on the network.  Data frames can be 
encrypted at layer2 (WEP, TKIP, or AES) on encrypted networks, and can be easily 
translated between 802.3 Ethernet and 802.11 formats.  Placing an 802.11 device in 
promiscuous mode will usually show the data frames for the receiving station in 802.3 
format, however it is not possible to show the other packet types, and it is not typically 
possible to receive data frames from other stations. 
 
Data frames contain no innate authentication unless they are encrypted with a strong 
standard (ie TKIP or AES).  Open and WEP networks contain no authentication or 
replay protection. 
 
2. Management frames, which define the network and control operations.  Beacon 
frames contain the network name (SSID), cryptographic settings, power save controls, 
etc.  Probe request and response frames control client access to the network at a basic 
level.   
 
Management frames contain no authentication mechanisms, however standards such as 
802.11w and custom vendor add-ons seek to address this lack.  Both require support 
both in the AP and in the client. 
 



3. Control frames, which handle clear-to-send/request-to-send, data recipt 
acknowledgement, and power save. 
  
 802.11 networks are fundamentally shared media, as all packets are sent on the 
same channel and are viewable by all.  Per-user encryption options such as WPA and 
WPA2 can introduce a “virtually switched” layer, where non-broadcast packets are 
decryptable only by a recipient with the per-user encryption key. 
 
 Unlike 802.3 networks which have a source MAC and destination MAC address 
in each frame, 802.11 data frames contain three MAC addresses (or sometimes four, in 
the case of mesh distribution systems): 
 
1. The source MAC address.  This is the original source, which may be a wired 
MAC in the case of a bridged wired/wireless network, the MAC of the wireless client, or 
the MAC of the access point if it is also acting as a router. 
 
2. The destination MAC address.  This can, like the source, be a wired device, the 
MAC of the AP if it is a router, or the MAC of another wireless device. 
 
3. The BSSID (Basic Service Set Identifier) MAC address.  This is the MAC address 
of the access point which is receiving and handling this packet.  In a multi-access point 
network, this is the access point the user is currently associated with. 
 
 Monitoring 802.11 requires a device and driver which is capable of entering 
“monitor” (or “rfmon”) mode.  Nearly all hardware is capable of this mode (barring 
some specific embedded devices with limited firmware).  Driver ability varies; Most 
drivers on Linux are capable of monitor mode, as are the Airport drivers on OSX, and 
many drivers on *BSD.  Most Windows platform drivers are not, however this may 
change in the Vista and Windows 7 models.  CACE Technologies produces a device, 
AirPCAP, specifically designed for monitor mode capture on Windows. 
 
 While normally an 802.11 device presents as an 802.3 Ethernet interface, in 
monitor mode it switches to a full 802.11 DLT (Data Link Type) and reports all decoded 
packets.  These include all data frames, management frames, and control frames seen, 
for all networks on that (and adjacent, due to overlap) channels. 
 
Current 802.11 Defenses 
 
 When we say that 802.11 access point security is well understood at this point, 
what we are basically saying is that we have good cryptography and that properly 
configured users on a WPA-Enterprise access point can trust that they are connected to a 
legitimate access point. 



 
 WPA-Enterprise (WPA and WPA2 using EAP authentication methods) layers 
additional defenses over the 802.11 layer.  Per-user authentication (typically against a 
radius backend) is protected by x509 certificates, user traffic is segregated by per-user 
keys, and both TKIP and AES provide replay protection on data frames. 
 
 While this model has opportunities for failure (such as improperly configured 
clients accepting invalid certificates, untrained users accepting invalid certificates, 
vulnerabilities discovered in TKIP replay protection), these failure points can often be 
avoided and are not truly within the scope of this effort. 
 
 Access point centric defense mechanisims on less-secure networks typically 
include passive monitoring, such as detecting unauthorized access points advertising the 
same SSID, and active counter-attacks, such as forcing clients previously to disconnect 
from an unauthorized access point by spoofing deauthentication and disassociation 
packets. 
 
 Access point client protection is generally controlled by filtering packets at layer 
two in the access point itself, preventing wireless clients from communicating with each 
other.  On most platforms this is known as “inter-client protection”.  Some vendor 
platforms may provide additional security mechanisms, such as stateful filtering at layer 
two or specific service filtering between clients. 
 
 There are few defenses against denial of service attacks (barring the “crowbar” 
method, in other words, find the offender, and hit them with a crowbar) as the 802.11 
management frames are not protected.  Even an otherwise secure WPA-Enterprise 
network will fall to a flood of disassociate packets, and no network can withstand a 
broad-spectrum jammer flooding the channel with noise. 
 
802.11 Injection and Spoofing Attacks 
 
 802.11 networks are vulnerable to several injection and spoofing attacks. 
 
 The most basic spoofing attack is to bring up a hostile access point with the same 
SSID as the target.  The 802.11 protocol considers all access points with the same SSID 
to be part of the same network, and will roam to the access point with the strongest 
signal.  This attack is the most obvious, but still highly effective. 
 
 A more subtle attack, and the one which we are most interested in, is injecting 
data frames directly to the client.  By spoofing the BSSID of the access point, it is 
possible to bypass any protection the access point may offer; The packet is sent directly 
to the target, and cannot be filtered by the access point.  This attack is trivial against 



open, unencrypted networks, and only slightly more difficult when targetting WEP 
networks, as the same key is used for all users on the network and is trivially cracked.  A 
direct-inject attack is theoretically possible against WPA-PSK networks where the PSK 
is known and a client is observed associating to the network – when the PSK is known 
and the association handshake is observed, the PTK per-user key can be extracted and 
the traffic decrypted.  There are further implications for implementing this attack against 
WPA-PSK (such as not disrupting the data sequence number protection in TKIP and 
AES) which have not been explored. 
 
LORCON 
 
 LORCON (or Loss Of Radio CONtrol, http://802.11ninja.net) is a packet injection 
library for trivializing the per-driver problems of injecting raw 802.11 frames.  Started in 
2004 by Josh Wright and Mike Kershaw, the latest release (Lorcon2-2009-11) introduces 
libpcap integration and a pcap-like API.  Developers familiar with the libpcap API will 
find implementing 802.11 packet handling trivial. 
 
 Currently the LORCON2 release targets the Linux kernel driver layer, mac80211.  
Support for older drivers such as madwifi and non-Linux drivers such as AirPCAP will 
be restored soon. 
 
 A typical LORCON2 program would look like: 
 

… 
/* Driver reference */ 
lorcon_driver_t *dri; 
/* Context used for tracking lorcon state */ 
lorcon_t *ctx; 
/* Packet data, initialized however */ 
uint8_t packet[...]; 
 
/* Automatically determine the driver */ 
dri = lorcon_auto_driver(“wlan0”); 
 
/* Create the context */ 
ctx = lorcon_create(“wlan0”, dri); 
 
/* Open in monitor + inject mode */ 
lorcon_open_injmon(ctx); 
 
/* Set channel */ 
lorcon_set_channel(ctx, 6); 
 
/* Send arbitrary bytes */ 
lorcon_send_bytes(ctx, sizeof(packet), packet); 



... 
 
 LORCON2 allows application developers to abstract away from specific driver 
limitations and problems. 
 
Attacking The Clients 
 
 Currently under-represented in the wireless security space is the risk to clients.  
Clients can be secured while connected to their “base” network (for example, a strongly 
secured WPA2-Enterprise network at the corporate office), however wireless systems are 
(typically) also mobile systems, and are then placed in the hands of users who take them 
home, to the bookstore, to the coffee shop, airports, etc.  Several risks remain even for 
users trained (or mandated) to use a VPN or similar tecnology. 
 
 Services which retain state across security boundaries are vulnerable to attacks 
from open networks.  As shown by Rsnake / Robert Hanson in “RFC 1918” blues” 
(http://www.sectheory.com/rfc1918-security-issues.htm), a significant exposure exists in 
the browser caching mechanism. 
 
 If an attacker is able to control both the remote host and the cache control of a 
web page, a malicious page may be cached by the browser across security domains.  
Once cached, the page is loaded from the local cache, even when the user is no longer 
within the control of the attacker. 
 
 To implement this on 802.11, we look to a much older tool.  Debuted at Defcon 
many years prior by Toast, AirPwn implemented TCP session hijacking over wireless.  
By updating this tool and integrating with Metasploit, we leverage the fledxibility of 
MSF and LORCON2. 
 
TCP Hijacking 
 
 The basic methodolgy used for TCP hijacking is identical to historic attacks 
against TCP sessions.  A TCP session is only “secure” against attack in as much as the 
sequence and acknowledgement numbers are unknown to an attacker.  On an open, 
shared media network this is no longer the case.  The TCP session hijack is implemented 
as a man-in-the-middle race condition, relying on the fact that the remote HTTP server is 
likely to be further away compared to the attacker. 
 
 A typical HTTP session: 
 

Client → Server  “GET /foo.html HTTP/1.0” 
sequence 123 ack 456 



 
Server ← Client “Content-Length: 123 Content-Type: Text/HTML <html>...” 

 sequence 456 ack 145 
 

 A HTTP session as seen by Airpwn-MSF: 
 

Client → Server  “GET /foo.html HTTP/1.0” 
sequence 123 ack 456 
 

Airpwn (spoofing server) ← Client “Content-Length: 200 Content-Type: 
Text/HTML Malicious page content...” 

Sequence 456 ack 145 
 
Airpwn (spoofing client) → Server “FIN!” 
 

Airpwn (spoofing server) ← Client “Fin!” 
 

Server (Ignored out-of-sequence data) ← Client “Content-Length: 123 Content-
Type: Text/HTML <html>...” 

 sequence 456 ack 145 

Impacts of TCP Stream Hijacking 
 
 TCP stream hijacking allows an attacker within WiFi range of the victim to 
replace any unencrypted content stream in such a way that the victim is unaware.  
Focusing on the impacts to web applications: 
 
1. Cache control.  TCP session attacks allow control of the HTTP headers, which 
define the cache control options.  Malcious content may be stored in the victims cache 
for exploitation in the future. 
 
2. Direct exploitation of browser vulnerabilities.  By inserting malicious content in 
otherwise “trusted” or “benign” websites via TCP session hijacking, direct browser 
vulnerability exploitation becomes possible. 
 
3. Complete control of the DOM.  Once malcious Javascript is inserted into a page, 
complte control of the page is given to the attacker.  Example DOM rewrite attacks 
include: 
 
1. Rewriting of links to remove encryption (rewrite HTTP and POST links for HTTP 
instead of HTTPS), allowing the attacker to sniff login information. 
 



2. Rewriting of form submission targets to a logging stager, allowing the attacker 
similar access to login details. 
 
3. Export of cookie data to an external logger, allowing the attacker access to user 
sessions. 
 
4. Dynamic replacement of website content, allowing an attacker opportunities to 
manipulate news items, stock reports, bank statements, or other content as viewed by the 
victim. 
 
Cache Control Attacks 
 
 The TCP session attacks against the HTTP streams allow for control of the HTTP 
headers, which define the cache control options: The HTTP response options “Cache-
control” and “Expires” control the browser retention. 
 
 By controlling the cache of the victim browser, malicious content may be stored 
for future use.  Manipulating the cache of pages considered by the user as “benign” or 
“insecure” allows an attacker future access to the browser within the secure perimiter. 
 
 Poisoning using a Javascript “staging” page allows complex control in future 
operations:  Specifically, using the cached Javascript to dynamically load the true, 
foreign content of the target page, then rewriting it before replacing the currently viewed 
document with the “legitimate” content. 
 
 Combining the staging technique with a remote site controlled by the attacker 
allows future attacks to be dynamically inserted into pages viewed by the user for as 
long as the staging page remains cached:  For example, unpatched browser attacks may 
be leveraged against clients within a “secure” perimiter once they have been cache-
poisoned via an insecure network: 
 
1. User takes laptop from a secure location to an insecure location (corporate 
network to coffee shop WiFi) 
 
2. User browses to an untrusted site (Social networking, photo sharing, news).  Site 
does not need to require credentials. 
 
3. MSF-Airpwn used to poison victim with cached “stager” page.  User sees original 
content and nothing is changed.  Content is actually loaded dynamically by the cached 
Javascript.  Stager code checks attacker website for updates each time target page is 
loaded. 
 



4. User returns to secure location 
 
5. Unpatched browser vulnerability is exposed.  Attacker places attack code on 
publicly accessible website coded into stager. 
 
6. The next time the user views the same site, attack code is executed, allowing an 
attacker a path into the secure network.  Attack code can be sent via HTTPS to evade 
detection by secure network IDS systems (should detection for the vulnerability exist). 
 
Advanced Cache Prediction Attacks 
 
 The attacks as discussed so far require the victim to visit a site from an insecure 
network without a VPN.  While this is likely to be the majority of users, attack avenues 
exist: 
 
1. User takes laptop from secure location to insecure location. 
 
2. User visits hotspot landing / EULA / sign-in page. 
 
3. Attacker poisons hotspot landing page via TCP session hijacking. 
 
4. Poisoned hotspot page loads “likely” sites in the background while the user is 
signing in. 
 
5. Attacker poisons sites loaded by the hotspot.  Advanced code may be used in the 
hotspot to detect if the TCP attack landed, and to re-request the page until the attack race 
condition is met. 
 
6. Victim switches to VPN. 
 
7. Victim visits page poisoned by the hotspot stager code. 
 
8. Victim has cached stager code for the site due to opportunistic guessing. 
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