Defending your DNS in a post-Kaminsky world

Paul Wouters
<paul@xelerance.com>
Overview

• History of DNS and the Kaminsky attack
• Various DNS problems explained
• Where to address the DNS problem
 – Nameservers, Network, Client and Data
• Bad ideas and why we won't do them
• Proposed and implemented ideas
• The future of DNS(SEC?)
Vendor and NGO's involved
Two phase deployment

• First release a generic fix for the Kaminsky attack that does not leak information to the bad guys (source port randomization)

• Then release the bug and patches specifically against the Kaminsky attack
DNS query packet

- IP header containing Source IP and Dest IP
- UDP or TCP Header containing Source Port and Dest Port
 (if TCP, also random Sequence Number)
- DNS Query ID
- DNS Query
- Option flags
DNS query example

12.110.110.204 → 193.110.157.136

UDP:12345 → 53

DNS Query ID: 54321
DNS Question: www.ripe.net?
Option flags: RD
DNS Answer packet

193.110.157.136 ➡️ 12.110.110.204

UDP:53 ➡️ 12345

QUESTION SECTION
Query ID: 54321
Question: www.ripe.net?

ANSWER SECTION
www.ripe.net = 193.0.0.195 (ttl=172800)

AUTHORITY SECTION
ripe.net NS ns-pri.ripe.net. (ttl=172800)
ripe.net NS ns-ext.isc.org. (ttl=172800)

ADDITIONAL SECTION
ns-pri.ripe.net A 193.0.0.195 (ttl=...)
ns-pri.ripe.net AAAA 2001:610:240:0:53:3
TXID is not enough anymore

- Bellowin's (theoretical) attack (1995)
Losing the race

EndUser -> ISP NS
ISP NS -> EVIL
EVIL -> RBC NS

Q: www.rbc.com ?
Q: www.rbc.com ? TXID = 32768
A: www.rbc.com = 1.2.3.4; TXID = 00001
A: www.rbc.com = 1.2.3.4; TXID = 00002
A: www.rbc.com = 1.2.3.4; TXID = 00003
A: www.rbc.com = 142.254.1.143; TXID = 32768
A: www.rbc.com = 142.254.1.143; TXID = 32768

TTL=86400
Winning the race

Black Hat Briefings
Random source ports

- Bernstein: Use random src ports as entropy
DJB's hack is still just a hack
NAT and DNS rebinding

EndUser → Nameserver → NAT / Firewall

Q: www.rbc.com
TXID: 32768
SRC PORT: 54195

RBC NAMESERVER

Q: www.rbc.com
TXID: 32768
SRC PORT: 1025

EVIL

Black Hat Briefings
NAT and DNS rebinding (2)

EndUser 10.1.1.2

Q: www.evil.com
A: 10.1.1.3

Nameserver 10.1.1.3

Q: www.evil.com
A: 10.1.1.3

NAT / Firewall

Q: www.evil.com
A: 10.1.1.3

EVIL
Birthday Attack on src ports

EVIL

Q:google.com
src port: 14773
TXID: 49265

Q:google.com
src port: 8573
TXID: 12963

Q:google.com
src port: 2222
TXID: 4524

A:1.2.3.4
src port: 2220
TXID: 4524

A:1.2.3.4
src port: 2221
TXID: 4524

ns1.google.com

Q:google.com
src port: 14773
TXID: 49265

Q:google.com
src port: 8573
TXID: 12963

Q:google.com
src port: 2222
TXID: 4524

A:1.2.3.4
src port: 2220
TXID: 4524

A:1.2.3.4
src port: 2221
TXID: 4524

EVIL
Kasphureff's attack (1997) caused Bailywick restrictions.
What protects our DNS?

- Transaction ID (TXID)
- Time To Live (TTL)
- Bailywick
The Kaminsky Attack

Without source port randomization, this only takes about 65535 packets.

If you lose the race, try bogus12346.

Overrides cache.
DNS related issues: Double Fast Flux

- Botnets use domains with NS and A records with low (eg 3 minute) TTL's.
- Change NS records via Registrar very quickly too (hours).
- This makes them next to impossible to shutdown.
DNS related issues: The Wifi hotspot

- Captive portals using DNS with mini DNS “server”
- This is so they can serve fake DNS
- This can cause client to cache wrong DNS
- Bad implementations break on EDNS and DNSSEC (hardcoded bits checking)

• Use transparent IP proxy instead
DNS related issues: Double Fast Flux

- Botnets use domains with NS and A records with low (e.g., 3 minute) TTL's.
- Change NS records via Registrar very quickly too (hours).
- This makes them next to impossible to shutdown.
Where to fix the DNS?

- Authorative nameservers
- Recursive nameservers
- Network firewalls and IDS
- Applications

- Protect the data or transport?
DNS is critical infrastructure

- Backwards compatible (opt-in)
- Non-invasive or intrusive (drop-in)
- Non-disruptive (no CPU/Bandwidth hog)
- No Protocol changes (we have DNSSEC)
- Preferably no TYPE overloading
- No magic such as untested crypto
- Patent / Royalty free
Authorative nameservers

- Upgrade server to allow DNSSEC
- Diversify your infrastructure

```plaintext
;; $<><> DiG 9.6.0a1 $<><> -t ns xelerance.com
;; global options: printcmd
;; Got answer:
;; >>>HEADER<<< opcode: QUERY, status: NOERROR, id: 57177
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 2

;; QUESTION SECTION:
xelerance.com.

;; ANSWER SECTION:
xelerance.com. 844 IN NS ns2.xelerance.org.
xelerance.com. 844 IN NS ns0.xelerance.nl.
xelerance.com. 844 IN NS ns1.xelerance.net.

;; ADDITIONAL SECTION:
ns0.xelerance.nl. 972 IN A 193.110.157.135
ns1.xelerance.net. 96036 IN A 209.237.247.134

;; Query time: 118 msec
;; SERVER: 193.110.157.2#53(193.110.157.2)
;; WHEN: Sat Jan 31 12:05:29 2009
;; MSG SIZE  rcvd: 142
```
Network IDS / Firewall

- It's patch work (pun intended)
- Does not address the problems
- Cannot make a decision when an attack is detected. What to do? Blocking is bad (denial of service to yourself)

- Monitor, log and warn. Do not interfere
- Be very careful with DNS load balancers
Monitor Unix based DNS
Monitoring using Cisco
Application fixes

• So many different applications to fix
• DNS API for applications is poor
• Easy to fool: DNS Rebinding or Fast Flux
• But let's not build DNS recursive nameservers in every application

(However a good recursive dns server on each host is a good solution)
The inevitable: Fix recursive nameservers

- Port randomization
- Sanitize TTL's
- Use more IP addresses per DNS server
- Harden against bogus size packets
- Harden glue
- Additional queries for infrastructure data
- 0x20
Birthday Attack protection

• Do not allow multiple queries for the same question to be outstanding (AKA query chaining)

(Unbound and PowerDNS support this)
Rebinding protection

- Allow to specify IP addresses that may never appear in “external” domain names

This way you can ensure 10.1.1.0/24 would never come in through DNS rebinding.
(supported in Unbound and PowerDNS)
The inevitable:
Fix recursive nameservers

- RFC 5452 “Measures for Making DNS More Resilient against Forged Answers”
- draft-wijngaards-dnsext-resolver-side-mitigation
- draft-vixie-dnsext-0x20
Attacks can be detected
Attack response #1

- At a spoof detection threshold, ignore all answers for that query
- Prevents accepting the right forged answer
- Also prevents accepting the real answer spoofmax=?
- Small value: easy DOS
- Large value: might be too late (PowerDNS has spoofmax=20)
Attack response #2

- At a spoof detection threshold throw away the **entire** cache and start from scratch
- Prevents using an accepted forged answer
- Small value: easy DOS on the cache
- Large value: might be too late (Unbound has spoofmax=10M)
Add more NS records?

• If you already have at least two or three, this does not buy you much
• Only makes an attack marginally harder
• Excessive NS records cause other problems (and adds more potentially outdated / vulnerable nameservers)
Chain your caches (esp. the ones behind NAT)
Blacklist IP ranges

• Do not allow certain IP ranges (used internally) to be part of an answer from a public DNS zone not under our control

• This prevents DNS rebinding attacks

• Example: only allow 10.0.0.0/8 in ourdomain.com, nowhere else.
Hardening infrastructure queries

- Before accepting NS records or A records of nameservers, ask at least two different nameservers.
- Before accepting glue records or additional data, independently verify these with new queries.

(extra work is only needed once, then we use caching – minimum impact)
Double Fast Flux protection

- Draft-bambenek-doubleflux suggests:
 - Replacing the TTL's of NS and A records of NS records with TTL=72 hours.
 - Limit Registrar changes to once per 72h
 - Recursurs and clients should drop NS or A of NS with TTL < 12
The 0x20 defense (Paul Vixie)

- You don't need “Td-CaNAdaTRuSt.cOm” when you can get “.CoM”
- Fails completely for the root (“.”)
The 0x20 defense (Paul Vixie)

DNS Question: bogus12345.www.paypal.com?
Option flags: RD
The 0x20 defense (Paul Vixie)

DNS Question: bogus12345.www.paypal.com?
Option flags: RD

DNS Query ID: 54321
DNS Question: bOGus12345.WwW.pAYpaL.Com
DNSSEC in a nutshell

- Show DNSSEC signed zone
DNSSEC Lookaside Verification
DNSSEC Bonus

- Offline secure authenticated wireless communication with rendezvous / zeroconf / bluetooth
If you have not implemented DNSSEC, are you planning to implement it?

- Yes: 85%
- No: 10%
- Unsure: 6%
ccNSO survey Nov 2007

- If you have not implemented DNSSEC, when are you planning to implement it?
.gov is signed!

well, when I made these slides, it was not, but now you read it, it should be

DNSSEC for All Top Level .GOV Domains

Published: August 29th, 2008 | Category: Security Vulnerabilities

Last week the [Office of Management and Budget](https://www.whitehouse.gov) released memoranda M-08-23, titled [Securing the Federal Government's Domain Name System Infrastructure](https://www.dhs.gov). The document states that all US government top level .gov domains will use [DNSSEC](https://www.dnssec.org) starting in January 2009. This is in response to the DNS cache poisoning attack that Dan Kaminsky made public a few months ago.

New Policy

This memorandum addresses two important issues in following through with the existing policy and expanding its scope to address all USG information systems.

A. The Federal Government will deploy DNSSEC to the top level .gov domain by January 2009. The top level .gov domain includes the registrar, registry, and DNS server operations. This policy requires that the top level .gov domain will be DNSSEC signed and processes to enable secure delegated sub-domains will be developed. Signing the top level .gov domain is a critical procedure necessary for broad deployment of DNSSEC, increases the utility of DNSSEC, and simplifies lower level deployment by agencies.

B. Your agency must now develop a plan of action and milestones for the deployment of DNSSEC to all applicable information systems. Appropriate DNSSEC capabilities must be deployed and operational by December 2009. The plan should follow recommendations in NIST Special Publication 800-81 "Secure Domain Name System (DNS) Deployment Guide," and address the particular requirements described in NIST Special Publication 800-133 "Secure Internet Protocol Version 6 (IPv6) Transition in the Federal Government."
DNS-OARC Domain Name System
Operations, Analysis, and Research Center
[Feb 2 2009 meeting information here]
February 3-4, 2009
Global DNS Security, Stability, and Resiliency Symposium

[Feb 3-4 meeting information here]
The Keys to Deploying DNSSEC: Managing and Meeting Your OMB Domain Name

Thursday, March 12, 2009
Session: 8:30AM - 4:30PM
Presented by:

DNSSEC Development Coordination Initiative

The DNSSEC Deployment Initiative works to encourage all sectors to voluntarily adopt security measures that will improve security of the internet’s naming infrastructure, as part of a global, cooperative effort that involves many nations and organizations in the public and private sectors.
Conclusions (1)

- **Update** your nameservers, or place them behind new nameservers.
- Look into more software then just Bind
 - **Unbound**, PowerDNS recursor
- Take a fresh look at your deployment, even when using firewalls and NAT. DNS **will** go through those.
- Ditch DNS captive portals and broken DSL routers
Conclusions (2)

• Prepare for DNSSEC

• Tell your vendor you require DNSSEC on the endnode that uses a dhcp obtained DNS forwarder.
Questions?