

Defending your DNS in a
post-Kaminsky world

Paul Wouters
<paul@xelerance.com>

Vendor and NGO's involved

Two phase deployment

First release a generic fix for the Kaminsky
attack that does not leak information to
the bad guys (source port randomization)

Then release the bug and patches
specifically against the Kaminsky attack

DNS query packet

DNS query example

 DNS Answer packet

TXID is not enough anymore

Bellowin's (theoretical) attack (1995)

Losing the race

Winning the race

Random source ports
Bernstein:Use random src ports as entropy

DJB's hack is still just a hack

Birthday Attack on src ports

NAT and DNS rebinding

NAT and DNS rebinding (2)

 Kasphureff's attack (1997)
caused Bailywick restrictions

What protected our DNS?

The attacker cannot see your packet
You always lose at StarBucks and TOR

Transaction ID (TXID)
Time To Live (TTL)
Bailywick

The Kaminsky Attack

Without source port randomization, this
only takes about 65535 packets

DNS related issues:
Double Fast Flux

Botnets use domains with NS and A
records with low (eg 3 minute) TTL's

Change NS records via Registrar very
quickly too (hours)

This makes them next to impossible to
shutdown.

(and soon OpenDNS commercial double fast flux)

DNS related issues:
The Wifi hotspot

Captive portals using DNS with mini DNS
“server”

This is so they can serve fake DNS
This can cause client to cache wrong DNS
Bad implementations break on EDNS and

DNSSEC (hardcoded bits checking)

Use transparent IP proxy instead

Where to fix the DNS ?

DNS is critical infrastructure

Backwards compatible (opt-in)
Non-invasive or intrusive (drop-in)
Non-disruptive (no CPU/Bandwidth hog)
No Protocol changes(we have DNSSEC)
Preferably no TYPE overloading
No magic such as untested cryptography
Patent / Royalty free

Thou Shalt Implement:

BCP 38BCP 38
(Egress Filtering)

Thou Shalt not:

combine a
recursive and
authoritative

server

Authorative nameservers

Upgrade server to allow DNSSEC
Diversify your infrastructure

Network IDS / Firewall

It's patch work (pun intended)
Does not address the problems
Cannot make a decision when an attack is

detected. What to do? Blocking is bad
(denial of service to yourself)

Monitor, log and warn. Do not interfere
Be very careful with DNS load balancers

Monitor Unix based DNS

Monitoring using Cisco
www.cisco.com/web/about/security/intelligence/dns-bcp.htm

policy-map type inspect dns preset_dns_map

 parameters

 !--- TXID matching – allow only 1 response
 dns-guard

 id-randomization

 id-mismatch count 10 duration 2 action log

 message-length maximum 512

 match header-flag RD

 drop

Monitoring using Cisco
firewall# show service-policy inspect dns

 Global policy:

 Service-policy: global_policy

 Class-map: inspection_default

 Inspect: dns preset_dns_map, packet 37841, drop 0,
reset-drop 0

 message-length maximum 512, drop 0

 dns-guard, count 21691

 protocol-enforcement, drop 0

 nat-rewrite, count 0

 id-randomization, count 21856

 id-mismatch count 10 duration 2, log 2

Application fixes

So many different applications to fix
DNS API for applications is poor
Easy to fool: DNS Rebinding or Fast Flux
But let's not build DNS recursive

nameservers in every application

(however a good recursive dns server on each host is
a good solution)

 The inevitable:
 Fix recursive nameservers
Port randomization
Sanitize TTL's
Use more IP addresses per DNS server
Harden against bogus size packets
Harden glue
Additional queries for infrastructure data
0x20

Birthday Attack protection

Do not allow multiple queries for the same
question to be outstanding (AKA query
chaining)

Unbound, Bind and PowerDNS
implement this properly

dnscache from DJB was apparently
vulnerable to this until a few days ago!

Rebinding protection

Allow to specify IP addresses that may
never appear in “external” domain
names

This way you can ensure 10.1.1.0/24
would never come in through DNS
rebinding.
(supported in Unbound and PowerDNS)

Attacks can be detected

Attack response #1
At a spoof detection threshold, ignore all

answers for that query
Prevents accepting the right forged answer
Also prevents accepting the real answer

spoofmax=?
Small value : easy DOS
Large value: might be too late

(PowerDNS has spoofmax=20)

Attack response #2

At a spoof detection threshold throw away
the entire cache and start from scratch

Prevents using an accepted forged answer
Small value : easy DOS on the cache
Large value: might be too late

(Unbound has spoofmax=10M)

Chain your caches
(esp. the ones behind NAT)

Add more NS records?

If you already have at least two or three,
this does not buy you much

Only makes an attack marginally harder

Excessive NS records cause other
problems (and adds more potentially
outdated / vulnerable nameservers)

Pick nameserver more random

Old days: prefer nameserver with shortest
TTL

New ways: Add some fuzz

 Hardening infrastructure
queries

Before accepting NS records or A records
of nameservers, ask at least two
different nameservers.

Before accepting glue records or additional
data, independently verify these with
new queries.

(extra work is only needed once, then we use
caching – minimum impact)

The 0x20 defense (Paul Vixie)

The 0x20 defense (Paul Vixie)

The 0x20 defense (Paul Vixie)

The 0x20 defense (Paul Vixie)

You don't need “Td-CaNAdaTRuSt.cOm”
when you can get “.CoM”

Fails completely for the root (“.”)

Double Fast Flux protection

Draft-bambenek-doubleflux suggests:

Replacing the TTL's of NS and A records
of NS records with TTL=72 hours.

Llimit Registrar changes to once per 72h
Recursors and clients should drop NS or A

of NS with TTL < 12

 The inevitable:
 Fix recursive nameservers
RFC 5452 “Measures for Making DNS

More Resilient against Forged Answers”
draft-wijngaards-dnsext-resolver-side-

mitigation
draft-vixie-dnsext-0x20

The real solution

DNSSEC

What is DNSSEC?

Authenticate (non)existence of data within
a zone

Create a path of trust between zones

Sign and preload the root (“.”) key

Traditional DNS

Add a public key to zone

Sign zone with private key

Give hash(pubkey) to parent

Rinse and Repeat

New DNS Record types

 DNSKEY
 RRSIG
 NSEC

 NSEC3

 DS

Public key
Signature RRset
“Clever” Record

denial of existence
“Super Clever”

Record stealthy
denial of existence

Delegation Signer r.

DNSSEC answers can be:

SECURE
INSECURE
BOGUS
UNKNOWN

Validated with key
Validated but no key
validation failed
ServFail etc

DNSSEC bits

The DO bit (query)
The AD bit (answer)
The CD bit (query)

DNSSEC (is) OK
Authenticated Data
Checking Disabled

New DNSSEC errors

Uhm, none. For maximum compatibility. If
any error happens, return the old
ServFail.

A validator can then redo the query with
the CD bit if it wants to see why it failed

Let's see some DNSSEC...

Unlike Adam Laurie and Johnny Long,
I have no cool Hollywood clip I can show

DNSSEC in a nutshell

NSEC: Denial of existence

NSEC3

 NSEC3: denial of
existence with a hack

Do not use names, but hashes
For added work, hash X times
Now sort the hashes

The validator that gets an NSEC3 record
back, hashes the QUERY name (x
times) too and compares

NSEC3: Too Clever

DNSSEC: Use Zone and Key
Signing keys

 DNSSEC: Key Signing Key
Rollover

DNSSEC: Key update
Triggers or Timers?

For DNSSEC: Key update from child to
parent

For most domains: Any updates via
Registrant to Registrar to Registry

For some domains: Registrant – Registry
communication

Most common solution will be EPP via
Registrar. Some by Registry polling

www.xelerance.com/dnssec/

DNSSEC Look-aside Verification

 Feb 16: https://itar.iana.org/

.gov is signed!

www.govsecinfo.com

dnssec-conf

www.xelerance.com/software/dnssec-conf

Provides key management and dnssec
configuration for Fedora/RHEL/CentOS

Yum install dnssec-conf
dnssec-configure –dnssec=on –dlv=on

http://www.xelerance.com/software/dnssec-conf

DNSSEC software

Authoritative nameservers:
Bind - www.isc.org
NSD - www.nlnetlabs.nl/projects/nsd/
Microsoft DNS (support recordtypes, not

signing)

Recursive validating nameservers:
Bind - www.isc.org/bind/
Unbound - www.unbound.net

config-system-dnssec

TODO: Integration

Integrate DNSSEC resolver with Network
Manager

Use DNS caching infrastructure via DHCP
obtained DNS servers, but:

Validate all crypto ourselves on the
endnode

ccNSO survey Nov 2007

If you have not implemented DNSSEC, are
you planning to implement it?

ccNSO survey Nov 2007

If you have not implemented DNSSEC,
when are you planning to implement it?

Conclusions (1)
Update your nameservers, or place them behind new

nameservers.

Look into more software then just Bind

Unbound, PowerDNS recursor

Take a fresh look at your deployment, even when using
firewalls and NAT. DNS will go through those.

Ditch DNS captive portals and broken DSL routers

Conclusions (2)

Prepare for DNSSEC

Tell your vendor[*] you require DNSSEC validation on
your laptop using a DHCP obtained DNS caching
server as forwarder.

[*] If you use Linux/BSD/OSX, why have you not
installed/configured/enabled it yet?

Questions?

(feel free to test with nssec.xelerance.com)

?

Why DNSCURVE sucks

There is no formal specification nor formal implementation, just proof of
concept code

Encrypts and protects TRANSPORT of dns data not data INTEGRITY itself

Everyone has to bypass dns caches (or blindly trust them).

Causes massive increase in DNS traffic

Type overloading of NS records with long crypto keysas names (HACK)

Uses patent encumbered Elliptic Curve cryptography

Uses Bernstein's specifically picked homegrown elliptic curve

No cipher or algorithm migration path if the curve falls over

Uses 95% more CPU (on each query instead of once on a signer machine)

Provides no partial deployment support (Secure Entry Points)

 I still need to punch him in the face for qmail

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

