

Who Am I?

 Peter Silberman
 Researcher/Developer at MANDIANT on the product

team
 Co-Wrote (Proof of Concepts) RAIDE and FUTo
 Co-Developed “Advanced Memory Forensics in

Incident Response”
 Wrote Audit Viewer
 Contributor to the Uninformed Journal
 Security Researcher:

 Found flaws in: CA, Windows, AVG, ZoneAlarm, Kaspersky,
Kerio

Talk Overview

 What is snorting memory
 Concepts critical to snorting memory

 Accessing/using physical memory
 Enumerating Strings

 Snort signatures

 Discuss Snorting Memory
 Identify malware before it goes over the wire
 New tool MindSniffer

 Theory Mets Reality – DEMO and tool release

What is Snorting Memory?

 Snorting Memory: “the ability to apply a snort
signature to a processes’ enumerated strings.”

 Two step process:
1. Translate snort signatures:

 MindSniffer

2. Use Memoryze to enumerate each processes’
strings.
 Snort XPath filter to strings being found in memory

OR
 Load XML results into Audit Viewer, apply snort signatures

Snort My Memory: Critical Concepts

 Need to understand how to access memory
 Access memory for two purposes

 Live Analysis
 Dumping Memory

 Virtual to physical address translation
 Note: Signatures work on live/dead memory

Accessing Physical Memory

 \Device\PhysicalMemory
 Section object exposed by Windows

 Reading from the handle allows application to read
physical memory

Translating Virtual to Physical

 Memoryze implements its own virtual to physical
address translation:
 Every virtual address needs to be translated to a

physical address within the section object
 Non PAE:

 PAE:
Virtual Address

Page Directory Index (512) Page Table Index (512) Byte Index (4096)

9 bits 12 bits9 bits2 bits

Accessing Physical Memory

 Map physical memory into buffer
 Write the buffer or parse the buffer

 Scan buffer for some characteristic (Live Analysis)
 Write buffer to dump (Offline)

 Problem: User-mode access is not allowed beginning
in Windows 2003 SP1 http://technet.microsoft.com/en-
us/library/cc787565.aspx

Physical Memory

 Reading physical memory benefits:
 Allows reading of process memory without debugging

 Defeats anti debugging techniques
 Gives a very complete picture of binaries that are packed

(even themida)
 Bypasses rootkits using dr register technique

 http://www.invisiblethings.org/papers/chameleon_concepts.pdf

Enumerating Strings

 Find every process in physical memory:
 Processes are represented as EPROCESS blocks in the kernel

 Parse EPROCESS’ memory sections:
 The VadRoot within the EPROCESS

 Tree of MMVAD entries
 MMVAD entries contain the virtual start address and size of

each memory section within a process
 Entries can represent heap, stack, binary images
 Helps manages process’ virtual address space

 Scan from virtual start -> virtual end
 Convert unicode strings containing US ascii characters to ASCII

strings

VAD Structure

 lkd> dt nt!_MMVAD
 +0x000 StartingVpn : Uint4B
 +0x004 EndingVpn : Uint4B
 +0x008 Parent : Ptr32 _MMVAD
 +0x00c LeftChild : Ptr32 _MMVAD
 +0x010 RightChild : Ptr32 _MMVAD
 +0x014 u : __unnamed
 +0x018 ControlArea : Ptr32 _CONTROL_AREA
 +0x01c FirstPrototypePte : Ptr32 _MMPTE
 +0x020 LastContiguousPte : Ptr32 _MMPTE
 +0x024 u2 : __unnamed

Enumerating Strings

 OllyDbg’s memory map view shows different
sections

 Each address range is:
 An entry in VadRoot, represented by MMVAD

structure

Enumerating Strings

 Safe assumption: VAD tree has not been
modified?
 Tests showed modifying/removing a VAD will result in

the operating system blue screening

Snort My Memory

 What is snort?
 Snort open source Intrusion Detection System (IDS)
 Widely deployed and used
 Applies signatures and rules to network traffic

Only one more slide on snort

Advantages to Using Snort

 Public signature/rule repository
 Community maintains and updates signatures:

 http://www.emergingthreats.net

 Signatures range from policy violation, to shellcode
detection
 Most of these signatures have application in memory

 Very active community

 My Memory

 Review:
 Snort signatures applied to strings in memory

 Problem snorting memory is solving:
 Quick identification of potential infection

 REMEMBER: Nothing found DOES NOT mean
nothings there

Snort My Memory

 Why do snort signatures work in memory:
 Snort identifies network indicators

 Indicators generated (usually) by processes
 Socket API requires strings in memory

 Identifying strings in a process’ memory space
 Applying a given signature is very similar to how snort works

 Potential for earlier identification

Snort My Memory

 Reasons why applying snort signatures in
memory works:
 Executables can contain strings in their .data section
 Strings that are freed are still in memory (no garbage

collection, and no zeroing of strings)
 Malicious executables are not system files

 Memoryze, can parse the paging file ensuring high
percentage of data

Snort My Memory

 What snort in memory can identify:
 Malware signatures

 Optix Pro
 Gimmiv
 Waledac

 (ASCII) Payloads
 Metasploit

 Policy violations
 Lots of “secret” strings in unencrypted memory

 Passwords anyone?

Snort My Memory

 Benefits of applying snort signatures to memory:
 Using snorts signature set, we get continually updated

signatures
 Commercially available signatures should? have the

potential to be used in memory
 Dormant malware
 Malware is mostly taking a file system up view, and

not a memory down view.
 Hide files, registry keys not strings

Snort My Memory

 Potential problems snorting memory:
 Strings in dynamic memory (stack or heap) may not stay around along

enough to be hit by a signature
 Timing is crucial

 Partial signatures
 Only ASCII characters (0x20-0x7E) can be used in signatures
 Malware encrypting strings and zeroing them out after use
 Some signatures will not be in memory.
 Dead memory

MindSniffer

MindSniffer
http://www.mandiant.com/software/mms.htm

 Purpose
 Translation from snort signature -> usable memory

format

 MindSniffer:
 python utility used in conjunction with Memoryze and

or Audit Viewer.
 What is Memoryze
 What is Audit Viewer

MindSniffer

 MindSniffer generates:
 An XML file that Memoryze understands and runs.

The XML file will have an XPath filter in it that
represents the parsed snort signature.
OR

 A python file that Audit Viewer loads and can apply to
the result of some audit previously performed.

MindSniffer.py

 MindSniffer takes the following parameters:
 -r - input to parse
 -x - generate signatures as separate xpath audits
 -p - generate python files to be used by audit viewer
 -o - output the files to a directory
 -n - specify or in xpath filter generation
 -m - specify memory image to be used in xpath filter

Memoryze
http://www.mandiant.com/software/memoryze.htm

 Memoryze
 Will acquire memory dumps
 List loaded drivers (including attached devices)
 Enumerates within all processes

 The handle table
 The memory sections
 The open ports
 The strings

 Detected dll injection
 Acquire processes and drivers
 Detect kernel hooks
 When analyzing live memory, Memoryze will utilize the paging file to get a better

picture of memory
 Suports Windows 2000-2003, BETA support for Vista all 32 bit at the moment

Free Tool: Audit Viewer
http://www.mandiant.com/software/mav.htm

 Audit Viewer allows the user to quickly view complex
XML output in an easily readable format. Using familiar
grouping of data and search capabilities, Audit Viewer
makes memory analysis quicker and more intuitive.
 Ability to search Files, Processes, Mutants, Events, Registry Keys, and

Strings using plain text or regex.
 Ability to load multiple Memoryze result sets contained in the same

directory.
 Handle types are separated out into more abstract types representing

the logical type of the handle such as Files, Directories (part of the
Object Manager’s namespace), Processes, Keys, Mutants, and Events.

 And More http://blog.mandiant.com/archives/50

Snort Signatures vs. Translated
Signatures
 Snort applies AND logic

 content:"GET "; uricontent:"/postcard.exe“
 Audit Viewer uses OR
 Memoryze can use either
 OR, can result in higher false positives

MindSniffer generated XML file

 Snort Signature:
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"ET TROJAN Gimmiv.A.dll Infection"; flow:
to_server,established; uricontent:"/test"; uricontent:".php";
uricontent:"?abc="; uricontent:"?def=";
reference:url,www.microsoft.com/security/portal/Entry.aspx?name=T
rojanSpy%3aWin32%2fGimmiv.A; classtype:trojan-activity;
sid:2008689; rev:2;)

 XPath Filter
<value xsi:type="xsd:string">//*[(contains(StringList, '/test') and

contains(StringList, '.php') and contains(StringList, '?abc=') and
contains(StringList, '?def='))]</value>

MindSniffer generated XML file

 Snort Signature:
 alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS

(msg:"ET TROJAN Hitpop.AG/Pophot.az HTTP Checkin";
flow:to_server,established; content:"GET "; depth:4;
uricontent:".asp"; nocase; uricontent:"|3F|ver="; nocase;
uricontent:"|26|tgid="; nocase; uricontent:"|26|address="; nocase;
pcre:"/address\=([0-9A-F][0-9A-F]-){5}([0-9A-F][0-9A-F])/i";
classtype:trojan-activity; sid:2008317; rev:2;)

 XPath Filter:
 <value xsi:type="xsd:string">//*[(contains(StringList, 'GET ') and

contains(StringList, '.asp') and contains(StringList, '?ver=') and
contains(StringList, '&tgid=') and contains(StringList, '&address=')
and matches(StringList, 'address\=([0-9A-F][0-9A-F]-){5}([0-9A-
F][0-9A-F])"'))]</value>

MindSniffer generated XML file

 Snort Signature:
 alert tcp $HOME_NET any -> $EXTERNAL_NET 1024: (msg:"ET

TROJAN Perfect Keylogger FTP Initial Install Log Upload (Null
obfuscated)"; flow:established,to_server;
content:"C|00|o|00|n|00|g|00|r|00|a|00|t|00|u|00|l|00|a|00|t|00|i|00|
o|00|n|00|s|00|!|00| |00|P|00|e|00|r|00|f|00|e|00|c|00|t|00|
|00|K|00|e|00|l|00|o|00|g|00|g|00|e|00|r|00| |00|w|00|a|00|s|00|
|00|s|00|u|00|c|00|c|00|e|00|s|00|s|00|f|00|u|00|l|00|l|00|y|00|
|00|i|00|n|00|s|00|t|00|a|00|l|00|l|00|e|00|d|00|"; classtype:trojan-
activity; sid:2008327; rev:1;)

 XPath Filter:
<value xsi:type="xsd:string">//*[(contains(StringList,
'Congratulations! Perfect Kelogger was successfully
installed'))]

MindSniffer generated XML file

 Snort Signature:
 alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"ET

CURRENT_EVENTS Possible XML 0-day for Internet Explorer Exploitation
Attempt (obfuscation 1)"; flow:established,from_server; content:"|7c|XML|7c
7c|if|7c|SPAN|7c|navigator|7c|CDATA|7c|http|7c|com|7c|w2k3|7c|appV
ersion|7c|version|7c|nt|7c
7c|X|7c|MSIE|7c|wxp|7c|114|7c|HTML|7c|DATAFLD|7c|DATASRC|7c|DA
TAFORMATAS|7c|ID|7c|while|7c|2003|7c|"; classtype:web-application-
attack; […]

 XPath Filter:
 <value xsi:type="xsd:string">//*[(contains(StringList,
'|XML||if|SPAN|navigator|CDATA|http|com|w2k3|appVersion|version|nt
||X|MSIE|wxp|114|HTML|DATAFLD|DATASRC|DATAFORMATAS|ID|whil
e|2003|'))]</value>

MindSniffer generated XML file
(caveat)
 alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS

(msg:"ET CURRENT_EVENTS Trojan resulting from Fake MS
Updates Email Login to CnC"; flow:established,to_server; content:"
HTTP/1.0|0d 0a|User-Agent|3a| Mozilla/4.0 (compatible\; MSIE
6.0\; Windows XP 2600.xpsp.9786-27197)|0d 0a|"; […]

 //*[(contains(StringList, ' HTTP/1.0') and contains(StringList, 'User-
Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows XP
2600.xpsp.9786-27197)'))]
 XML Sanitization results in \r \n being broken into separate elements.
 MindSniffer mimics this by breaking apart signatures

MindSniffer python module

 Audit Viewer now imports anything from
_Signatures\ directory

 Audit Viewer calls initialize for module which
registers the “plugin” with Audit Viewer

 Users can then apply signatures to processes

Future of MindSniffer

 Better parsing of snort rules
 Better generation of translated snort rules

 Utilize pcre flags

 More and More and More testing

Lessons learned

 Over the course of testing
 Snort - Variant specific signatures
 Memory – (potential) for generic malware signaturs

per variant
 “Optix Pro v1.33” exists 5 times in an infected processes

 Optix Pro v\d\.\d+

Conclusion

 This is a very small first step
 The future is very bright for writing memory

specific signatures
 There are a lot more signaturable strings in memory
 The future for snort signatures in memory is yet to be

determined.
 Gimmicky at best, not going to solve bad ass IR

Thanks

 Anne M
 Product Team
 Kelcey Tietjen
 Lurene Grenier
 Michael Sutton, and Shmoocon presenter for

twitter idea

DEMO

Theory Meets Reality

DEMO

 Generate Signatures
 Find Waledac
 Find Gimmiv (if time permits)

Waledac Signatures

 alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"ET TROJAN Waledac Beacon Traffic Detected";
flow:to_server,established; content:"POST /"; depth:6; content:"|0d
0a|Referer\: Mozilla|0d 0a|"; nocase; within:50; content:"|0d
0a|User-Agent\: Mozilla|0d 0a|"; within:120; content:"a="; nocase;
within: 100; classtype:trojan-
activity;reference:url,www.shadowserver.org/wiki/pmwiki.php?n=Cal
endar.20081231; sid:2008958; rev:1;)

Gimmiv Signature (Time??)

 alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"ET TROJAN Gimmiv.A.dll Infection"; flow:
to_server,established; uricontent:"/test"; uricontent:".php";
uricontent:"?abc="; uricontent:"?def=";
reference:url,www.microsoft.com/security/portal/Entry.aspx?name=T
rojanSpy%3aWin32%2fGimmiv.A; classtype:trojan-activity;
sid:2008689; rev:2;)

Questions??

 Contact:
peter.silberman@mandiant.com

 Blog:
http://blog.mandiant.com

 Files:
MindSniffer - http://www.mandiant.com/software/mms.htm
Memoryze - http://www.mandiant.com/software/memoryze.htm
Audit Viewer - http://www.mandiant.com/software/mav.htm

