
BLACK HAT DC 2009

Windows Vista Security

Internals

2/18/2009

An analysis of Vista vs. prior versions of Windows’ implementation of cryptographic primitives to

protect sensitive in-memory data, such as password hashes. Vista SP1 introduces significant

changes to these mechanisms and will change the way analysts, researchers and attackers approach

the acquisition of protected in-memory data. A basic overview of pre- and post-Vista security

architecture is given to provide some groundwork for the detailed analysis.

Michael Muckin
Lockheed Martin

Corporate Information Security Engineering

Windows Vista Security Internals

2

Contents

SECTION I .. 3

Introduction ... 4

Overview of the Vista Security Architecture .. 4

Pre-Vista Security Architecture... 5

Vista Security Architecture ... 7

Logon Architecture .. 7

Integrity Mechanism ... 8

Encryption Services .. 11

SECTION II ... 12

A Change Is Detected ... 13

Detailed Analysis ... 16

Relevant Functions as Defined in BCrypt.h ... 16

Implementation Examples ... 19

Comparative Analysis of LsaInitializeProtectedMemory() and LsaEncryptMemory()

in Vista RTM and SP1 .. 23

Observations of Analysis ... 31

Challenges to Extracting the Hashes ... 31

APPENDIX .. 32

Windows Vista Security Internals

3

SECTION I

Overview of the Changes

Windows Vista Security Internals

4

Introduction

Windows Vista introduces some significant changes in its security architecture; there are also some

major changes between Vista RTM (release-to-manufacturing; a Microsoft term for “gold” code or

SP0) and Vista SP1. This paper will first provide a brief overview of some of those architectural

changes, and will then focus on the specific components that will be covered in greater detail in

subsequent sections. The focus areas for this paper will be on logon and authentication, encryption

and some networking enhancements in IPSec.

Most of the discussion in this paper will focus on the Local Security Authority service - LSASRV.dl,

the new Cryptography Next Generation (CNG) APIs – BCrypt.dll and NCrypt.dll, and some

enhancements to IPSec contained in IKEEXT.dll.

Overview of the Vista Security Architecture

To lay some basic groundwork, let’s first review some of the major changes in the security

architecture of Windows Vista vs. prior Windows operating systems.

Windows Vista has produced many changes that are security feature/function related and some

that are low-level changes that help combat malicious software from executing. Things like

Address Space Layout Randomization (ASLR), Data Execution Prevention (DEP), User Account

Control (UAC) are all intended to make Vista a more secure system – these technologies have been

adequately discussed elsewhere and we will not dive deeply into them here.

There have also been some specific architectural changes to Vista that focus on the discrete security

modules, functions, APIs and components that handle logons, encryption and networking. We will

first discuss these changes at a high level and then dive into specific details in later sections.

Windows Vista Security Internals

5

Pre-Vista Security Architecture

For comparison, we will first review some of the major components of the Windows security

architecture pre-Vista. The diagram in Figure 1 illustrates the architecture for logon and

authentication, which includes the following components:

- LSASS – Local Security Authority Subsystem

o LSA interfaces with many other security related components, all of which are not

listed here. For our purposes, LSASRV.dll is the most important component.

- WinLogon – The user-mode process that provides interactive logon services

- MsGina – The user interface for WinLogon

- Authentication Packages – Authentication packages validate a user’s logon credentials. In

Windows there are three primary packages:

o MSV1_0 – authentication package for LM/NTLM authentication requests

o Kerberos – for Windows Domains

o SPNEGO – a package to select between Kerberos (preferred) or NTLM

It is possible to create custom authentication packages that can be implemented as a DLL.

Figure 1 - Pre-Vista Security Architecture

Windows Vista Security Internals

6

Figure 2 provides details about the Windows Logon architecture. This is a big topic – a whole paper

on just the Windows logon process could be (and has been) written; we will focus on the important

concepts relevant to this paper. Session 0 contained all services, including system services and the

interactive logons of any users on the system.

Figure 2 - Pre-Vista Logon Architecture

Also, unless it was replaced by a third-party, all interactive logon requests were processed by

MSGina (msgina.dll), which provides the GUI to capture user’s input to pass to WinLogon, which

would then pass on to LSASS and the appropriate Authentication Package.

Windows Vista Security Internals

7

Vista Security Architecture

The Vista security architecture has departed from two major components that were discussed

previously – namely MSGina and the implementation of Session 0. We will also illustrate some

modifications in how Vista implements the Windows Integrity Mechanism/Levels to provide

separation of privileges and processes. Lastly, there is the upgrade to the Crypto API – which is

called the Cryptography Next Generation (CNG) API. It is important to understand these changes

since they will be a large part of the remainder of this paper.

Logon Architecture

Vista has a redesigned architecture for processing both interactive (i.e. logging in from the

keyboard) and other logons, such as service and network logons. Session 0 now contains only

System Services and does not process interactive logons. I have found one discrepancy to this,

however, in the __vmware_user__ user account (shown below in Figure 3). This account will

show up as an interactive logon in Session 0 on Vista (I have not yet researched the details of this).

All other true interactive logons seem to receive sequential logon sessions, i.e. Session 1, Session 2,

etc. Other specific details of the new logon architecture are listed below and illustrated in Figure 4.

Figure 3 - Interactive Logon in Session 0

Vista Logon Architecture changes:

- Removal of MsGina – it is probably more accurate to say that any Gina dll – whether it be

Microsoft’s or a third party, will not be utilized by WinLogon.

- WinLogon and Logon Sessions vs. Session0 – Separation of logon sessions for users and

services. Concept is that services should have no need to interact with the desktop

- LogonUI (new) and Credential Providers (new) components – essentially the replacement for

Gina. Credential Providers architecture is meant to be extensible and allow for multiple plug-in

providers. WinLogon handles interactive logons directly. LogonUI is COM based

Windows Vista Security Internals

8

Figure 4 - Vista Logon Architecture

Integrity Mechanism

Another important component and enhancement of the Vista security architecture is the Integrity

Mechanism. Although the Integrity Mechanism and Levels are not new in Vista, there are some

changes in Vista vs. prior operating systems that are important for our purposes. Integrity Levels

are one way that Windows enforces Mandatory Access Controls to specific system objects and

resources. It also provides some level of separation of privileges for processes running in the same

user’s context. One goal of integrity levels is to isolate system services – especially those running in

Session 0 – from all other processes.

The Integrity Mechanism adds an integrity level to security access tokens and a mandatory label for

Access Control Entries (ACE) on the System ACL (SACL) of securable objects. There are five defined

integrity levels:

Windows Vista Security Internals

9

Table 1 - Integrity Levels

Value Integrity Level Symbolic Name

0x0000 Untrusted SECURITY_MANDATORY_UNTRUSTED_RID

0x1000 Low Level SECURITY_MANDATORY_LOW_RID

0x2000 Medium Level SECURITY_MANDATORY_MEDIUM_RID

0x3000 High Level SECURITY_MANDATORY_HIGH_RID

0x4000 System Level SECURITY_MANDATORY_SYSTEM_RID

These integrity levels are used to construct integrity level SIDs (Security Identifiers) so that they

can be easily integrated into the existing Windows access control architecture. The unique SID

value for integrity levels is S-1-16-XXXX. So, an integrity level SID for a High Level entry would be

S-1-16-12288 (12288 is decimal for 0x3000).

There are also Mandatory Access Token Policies and Mandatory Label Policies specific to Vista that

we should discuss here. They are listed in the two tables below.

Table 2 - Mandatory Access Token Policy

Policy Description

TOKEN_MANDATORY_NO_WRITE_UP Default policy on all access tokens; restricts write access

on objects with a higher level than current token

TOKEN_MANDATORY_NEW_PROCESS_MIN Controls behavior of child process integrity level

assignment; Instead of inheriting parent level, an

algorithm determines least possible privilege

Table 3 - Mandatory Label Policy

Policy Description

SYSTEM_MANDATORY_POLICY_NO_WRITE_UP Restricts write access by a subject with a lower

integrity level

SYSTEM_MANDATORY_POLICY_NO_READ_UP Restricts read access by a subject with a lower

integrity level

SYSTEM_MANDATORY_POLICY_NO_EXECUTE_UP Restricts execution by a subject with a lower

integrity level

And to see how specific user account SIDs are mapped to Integrity Levels, see Table 4 below. Notice

how all the system accounts (LocalSystem, LocalService, NetworkService) have the highest –

System – integrity levels, and that Administrators do not have the highest levels by default.

Windows Vista Security Internals

10

Table 4 - Account SIDs and Integrity Levels

SID in access token Assigned integrity level

LocalSystem System

LocalService System

NetworkService System

Administrators High

Cryptographic Operators High

Authenticated Users Medium

Everyone (World) Low

Anonymous Untrusted

The Integrity Levels add yet another obstacle to attackers and malicious users/code attempting to

compromise a Vista machine. Some areas where it directly impacts a potential attacker is injecting

code into system services and privilege escalation. Coupled with other protection mechanisms such

as ASLR, DEP, SafeSEH it is becoming more challenging and complex to exploit and execute

malicious code on Vista.

Windows Vista Security Internals

11

Encryption Services

Windows Vista first offers the use of the Cryptography Next Generation (CNG) service and APIs, as

provided by the modules BCrypt.dll, Ncrypt.dll and the kernel driver Ksecdd.sys (there are probably

other modules involved). CNG is the successor to the CryptoAPI. CNG is well documented on MSDN

and there is a CNG SDK available.

Although the new CNG services were available in Vista, it wasn’t until SP1 that Microsoft

implemented some of the CNG services directly into the security components that comprise user

logons and storage of password hashes. We will explore this area in detail in other sections of this

paper.

Figure 4 - CNG Architecture

This new CNG architecture is important to grasp as it has replaced the mechanisms used to protect

password hashes stored in memory on Windows Vista SP1, and is the lion’s share of discussion of

this paper.

An interesting side note about CNG and SP1: the implementation of the random number generator

in CNG as implemented in Vista SP1 (and Windows Server 2008) is not compliant with FIPS 140-2

RNG in several modules.

The author will speculate that this is so because of the addition of a number of “preferred” system

functions used for RNG creation found in SP1 that are not present in RTM.

Windows Vista Security Internals

12

SECTION II

Protection of In Memory Password Hashes

Windows Vista Security Internals

13

A Change Is Detected

While doing some typical security testing as part of an analysis of malicious user capabilities on a

compromised machine – and also to validate some countermeasures that were being developed to

clear password hashes in memory – I was using the favorite technique of dumping the various

password stores (hashes, credentials, LSA, etc.) on Windows machines. I performed these tests

using the usual toolsets (PWDumpX, PTH Toolkit, etc.) on both XP and Vista computers with great

success. I later attempted this same testing on another Vista machine and discovered that the

dumping of hashes stored in memory was not possible, even after some significant tweaking and

digging for the necessary offsets using PTH Toolkit. I soon realized the second Vista machine was at

SP1 and the first Vista machine was at RTM. Further analysis revealed Vista RTM behaves exactly

the same as XP SP3 when dealing with in memory stored hashes (at least as far as my testing could

detect).

Disassembly and comparative binary analysis of the relevant modules and functions involved with

the storage of in-memory hashes revealed that Vista SP1 has made some significant changes to

these specific functions. The two functions most impacted are

LsaInitializeProtectedMemory() and LsaEncryptMemory(), both contained in

LSASRV.dll. LSASRV.dll provides the primary services of the Local Security Authority server that is

offered via the Local Security Authority Sub-system (LSASS.exe) user-mode process. The native

functions of LSASRV.dll provide services for authentication, encryption, user account privileges and

management, domain trusts and more. It is a key component of the Windows security architecture.

Figure 5 - eEye Darun Grim Diffing Tool on LSASRV.dll

Using the Darun Grim diffing tool from eEye, it is obvious that there are significant differences in

many functions contained within LSASRV.dll. By sorting on Match Rate within the tool (which

calculates a percentage based on the differences detected between the identified functions) we see

that LsaEncryptMemory and LsaInitializeProtectedMemory are two functions among the most

dissimilar.

Then, using Darun Grim’s diffing-graphing capability, you can see the side-by-side differences in

execution of the same functions in Vista and Vista SP1.

Windows Vista Security Internals

14

Figure 6 - LsaInitializeProtectedMemory() Comparison

Figure 6 shows the huge difference in execution flow for LsaInitializeProtectedMemory()

between Vista and Vista SP1. Beyond the changes in raw execution flow, there are major changes in

the functions and call structure used to generate the keys for encryption/decryption. The primary

purpose of LsaInitializeProtectedMemory()is to create the corresponding encryption

keys for use by LsaEncryptMemory().

Windows Vista Security Internals

15

Figure 7 - LsaEncryptMemory() Comparison

A quick look at Figure 7 shows the differences in LsaEncryptMemory() do not appear as severe

as LsaInitializeProtectedMemory(), but upon further inspection those differences

becomes obvious. If you are not familiar with Darun Grim, the orange-brown colored boxes

indicate pieces of code that have no match in the comparative function. The yellow boxes label

code segments that have been modified. So you can see there is almost nothing in SP1 that exists in

the RTM implementation of this function.

The next section of this paper will break out the changes in LsaEncryptMemory()and

LsaInitializeProtectedMemory()in greater detail via disassembly and analysis of these

functions to determine the specific code-level modifications made and to discover any potential

paths to malicious techniques against the new modules.

Windows Vista Security Internals

16

Detailed Analysis

Here we will provide code level examples in C/C++ and assembly of the applicable functions

contained with BCrypt.dll, and disassembly of the functions

LsaInitializeProtectedMemory()and LsaEncryptMemory(). These examples will be

broken down into three sub-sections:

1. Relevant Functions as Defined in BCrypt.h (CNG API)

2. Implementation examples of the relevant functions

3. Detailed analysis of LsaInitializeProtectedMemory()and LsaEncryptMemory()

Relevant Functions as Defined in BCrypt.h

BCrypt offers many functions as part of the CNG API. It is not necessary to examine all of these

functions – we are only concerned with the ones used in the encryption/decryption of password

hashes in memory. The specific functions we will examine are:

• BCryptOpenAlgorithmProvider

• BCryptSetProperty

• BCryptGetProperty

• BCryptEncrypt/Decrypt

• BCryptGenRandom

• BCryptGenerateSymmetricKey

Note: It is not necessary to go through all the code listings here. They are provided to give a full

description of the functions, structures and some simple implementation examples of the functions

we will examine from a reversing perspective. If you can follow reversing concepts and

disassembly easily, it is not necessary to go through this section in great detail.

Code Listing 1: This function returns a handle to the opened primitive algorithm specified

by the pszAlgId input.

BCryptOpenAlgorithmProvider(

 __out BCRYPT_ALG_HANDLE *phAlgorithm,
 __in LPCWSTR pszAlgId,
 __in_opt LPCWSTR pszImplementation,
 __in ULONG dwFlags);

Code Listing 1 - BCryptOpenAlgorithmProvider

Windows Vista Security Internals

17

Code Listing 2: This function obtains the value for the specified property of an object – such

as the size of a key object or block cipher length.

Code Listing 3: This function sets the value of a specified object – such as selecting the mode

for cipher block encryption.

Code Listing 4: This function generates the symmetric key using the specified algorithm.

BCryptGenerateSymmetricKey(
 __inout BCRYPT_ALG_HANDLE hAlgorithm,
 __out BCRYPT_KEY_HANDLE *phKey,
 __out_bcount_full(cbKeyObject) PUCHAR pbKeyObject,
 __in ULONG cbKeyObject,
 __in_bcount(cbSecret) PUCHAR pbSecret,
 __in ULONG cbSecret,
 __in ULONG dwFlags);

BCryptSetProperty(
 __inout BCRYPT_HANDLE hObject,
 __in LPCWSTR pszProperty,
 __in_bcount(cbInput) PUCHAR pbInput,
 __in ULONG cbInput,
 __in ULONG dwFlags);

BCryptGetProperty(
 __in BCRYPT_HANDLE hObject,
 __in LPCWSTR pszProperty,
 __out_bcount_part_opt(cbOutput, *pcbResult) PUCHAR pbOutput,
 __in ULONG cbOutput,
 __out ULONG *pcbResult,
 __in ULONG dwFlags);

Code Listing 2 - BCryptGetProperty

Code Listing 3 - BCryptSetProperty

Code Listing 4 - BCryptGenerateSymmetricKey

Windows Vista Security Internals

18

Code Listing 5: This function performs the encryption .

Code Listing 6: This function will fill a buffer with random bytes.

BCryptGenRandom(
 __inout BCRYPT_ALG_HANDLE hAlgorithm,
 __inout_bcount_full(cbBuffer) PUCHAR pbBuffer,
 __in ULONG cbBuffer,
 __in ULONG dwFlags);

BCryptEncrypt(
 __inout BCRYPT_KEY_HANDLE hKey,
 __in_bcount(cbInput) PUCHAR pbInput,
 __in ULONG cbInput,
 __in_opt VOID *pPaddingInfo,
 __inout_bcount_opt(cbIV) PUCHAR pbIV,
 __in ULONG cbIV,
 __out_bcount_part_opt(cbOutput, *pcbResult) PUCHAR pbOutput,
 __in ULONG cbOutput,
 __out ULONG *pcbResult,
 __in ULONG dwFlags);

Code Listing 5 - BCryptEncrypt

Code Listing 6 - BCryptGenRandom

Windows Vista Security Internals

19

Implementation Examples

The following code listings are not complete – the purpose of these listings is to show some

implementation snippets of the relevant cryptographic functions that we will be dissecting as we

look at how Vista encrypts some in-memory values, such as password hashes. See the Microsoft

CNG Development Kit or Windows SDK for more details.

Let’s declare the necessary parameters we will need:

Then open the provider that we want – in this example, it will be AES. This function returns a

handle for the opened algorithm as hAesProvider.

Once the primitive algorithm is opened you must then determine some sizes before you can do any

work:

• Calculate the size of the blocks for the algorithm to be used (CBC, CFB, etc.) and the key

object itself

• This is done via the BCryptGetProperty()function:

//open the algorithm handle
if(!NT_SUCCESS(status = BCryptOpenAlgorithmProvider(
 &hAesProvider,
 BCRYPT_AES_ALGORITHM,
 NULL,
 0)))

//declarations
BCRYPT_ALG_HANDLE hAesProvider = NULL;
BCRYPT_KEY_HANDLE hAesKey = NULL;
NTSTATUS status = STATUS_UNSUCCESSFUL;
DWORD cbCipherText = 0,
 cbPlainText = 0,
 cbData = 0,
 cbKeyObject = 0,
 cbBlockLen = 0,
 cbBlob = 0;
PBYTE pbCipherText = NULL,
 pbPlainText = NULL,
 pbKeyObject = NULL,
 pbIV = NULL,
 pbBlob = NULL

pbRandom = NULL;

Code Listing 7 - Declarations

Code Listing 8 - Open Algorithm

Windows Vista Security Internals

20

With the proper sizes of the key object and the appropriate block lengths, some size checking and

buffer allocation would be in order (not shown here).

Then you would set the proper value for the key type you need; we are using AES CBC in this

example. After setting this value, you would then generate the key.

//calculate the size of the buffer for the KeyObject
if(!NT_SUCCESS(status = BCryptGetProperty(
 hAesProvider,
 BCRYPT_OBJECT_LENGTH,
 (PBYTE)&cbKeyObject,
 sizeof(DWORD),
 &cbData,
 0)))

//calculate the size of the block for IV
if(!NT_SUCCESS(status = BCryptGetProperty(
 hAesProvider,
 BCRYPT_BLOCK_LENGTH,
 (PBYTE)&cbBlockLen,
 sizeof(DWORD),
 &cbData,
 0)))

Code Listing 9 - Get Size of Key and Block Length

Windows Vista Security Internals

21

The BCryptGenRandom() function has many useful applications and is often used in cryptographic

seeds, IVs and other purposes as needed. A quick example is given below:

//Random generator – fills a buffer with random bytes
if(!NT_SUCCESS(status = BCryptGenRandom(
 hAesProvider,
 (PBYTE)&pbRandom, //pointer to_
 sizeof(pbRandom), //buffer
 0)))

//after some size checking and buffer allocation,
//set the value for the key to be created
if(!NT_SUCCESS(status = BCryptSetProperty(
 hAesProvider,
 BCRYPT_CHAINING_MODE,
 (PBYTE)BCRYPT_CHAIN_MODE_CBC,
 sizeof(BCRYPT_CHAIN_MODE_CBC),
 0)))

// generate the key
if(!NT_SUCCESS(status = BCryptGenerateSymmetricKey(
 hAesProvider,
 &hAesKey,
 pbKeyObject, //key buffer
 cbKeyObject, //size of key buffer
 (PBYTE)myAESKey, //buffer with_
 sizeof(myAESKey), //secret key
 0)))

Code Listing 10 - Set Value for Key type and Generate Key

Code Listing 11 - Random Generator

Windows Vista Security Internals

22

* The BCRYPT_BLOCK_PADDING is only used with symmetric algorithms and offloads

manual calculations of block size multiples.

// save a copy of the key and IV for later use
// *** This is important because the BCryptEncrypt/Decrypt
// functions will alter them so that they cannot be reused ***
// We will not list this code here for brevity’s sake

// use the key to encrypt the plaintext
if(!NT_SUCCESS(status = BCryptEncrypt(
 hAesKey, //key
 pbPlainText, //plain buffer
 cbPlainText, //size of buffer
 NULL, //NULL for symmetric
 pbIV, // buffer of IV
 cbBlockLen, //size of IV
 pbCipherText, //output buffer
 cbCipherText, //size of output
 &cbData, //pointer # bytes out
 BCRYPT_BLOCK_PADDING)))

// the decrypt function is listed as well
if(!NT_SUCCESS(status = BCryptDecrypt(
 hAesKey,
 pbCipherText,
 cbCipherText,
 NULL,
 pbIV,
 cbBlockLen,
 pbPlainText,
 cbPlainText,
 &cbPlainText,
 BCRYPT_BLOCK_PADDING)))

Code Listing 12 - Encrypt and Decrypt functions

Windows Vista Security Internals

23

Comparative Analysis of LsaInitializeProtectedMemory() and LsaEncryptMemory() in

Vista RTM and SP1

Now that we have a solid understanding of the relevant CNG structures and functions, let’s dive into

the analysis of how they are implemented within the Vista operating system directly.

The two functions within LSASRV.dll – LsaInitializeProtectedMemory() and

LsaEncryptMemory() – are the primary functions involved in protecting in-memory hashes of

Windows logon sessions. LsaInitializeProtectedMemory()generates the keys that will be

used to perform the encryption and LsaEncryptMemory()actually performs the encryption and

decryption of data.

We will be examining the significant differences in these functions between Vista SP1 and Vista

RTM (and XP SP3 – I did not check previous versions, but suspect they will all be the same - or at

least similar - since the “pash-the-hash” concept has applied to almost all previous NT-based OSs).

At a high level, the protection mechanisms that encrypt in-memory password hashes have

completely changed. Prior to Vista SP1, the primary mechanism used to perform the in-memory

encryption was DES. Actually, it is a Microsoft specific implementation of DES called DESX (DES

Extended).

In Vista SP1 (and Windows Server 2008), Microsoft has applied the new CNG functions to protect

the in-memory hashes. The algorithms used to perform these functions are 3DES and AES.

In the Code Listings that will follow, please note the following :

Comments have been added throughout the code listings to make the analysis easier to follow.

Vista SP1 code will be listed in red text boxes

Vista RTM code will be listed in blue text boxes

Windows Vista Security Internals

24

VISTA RTM LsaInitializeProtectedMemory()

.text: _LsaInitializeProtectedMemory@0 proc near
.text:
.text: push 4

 ; set flProtect in VirtualAlloc(); 4 = Read/Write

.text: mov eax, 190h
.text: push 1000h

 ; flAllocationType; 1000 = MEM_COMMIT – allocate memory and zero it

.text: push eax
.text: push 0
.text: mov ?g_cbRandomKey@@3KA, 100h

 ; 256 bytes for cbRandomKey

.text: mov ?CredLockedMemorySize@@3KA, eax
.text: call ds:__imp__VirtualAlloc@16

 ; Call VirtualAlloc()

.text: test eax, eax
.text: mov ?CredLockedMemory@@3PAXA, eax
.text: jz loc_73056135
.text: push esi
.text: push ?CredLockedMemorySize@@3KA
.text: push eax
.text: call ds:__imp__VirtualLock@8
.text: test eax, eax
.text: jz loc_73056143
.text: mov eax, ?CredLockedMemory@@3PAXA
.text: mov ?g_pDESXKey@@3PAU_desxtable@@A, eax

.text: add eax, 90h
.text: push 18h
.text: push eax
.text: mov ?g_pRandomKey@@3PAEA, eax

.text: call _SystemFunction036@8 ; SystemFunction036 is equivalent to

;ADVAPI32.dll!RtlGenRandom

.text: test al, al

.text: jz short loc_730348BF

.text: push 8

.text: push offset ?g_Feedback@@3_KA

.text: call _SystemFunction036@8

.text: test al, al

.text: jz short loc_730348BF

.text: push ?g_pRandomKey@@3PAEA

.text: push ?g_pDESXKey@@3PAU_desxtable@@A

.text: call _desxkey@8

.text: push ?g_cbRandomKey@@3KA

.text: push ?g_pRandomKey@@3PAEA

.text: call _SystemFunction036@8

.text: test al, al

.text: jz short loc_730348BF

.text: xor esi, esi

; These lines are the Microsoft DES extended (DESX) algorithm that takes the random key,

;adds ;“whitening” padding from the desxtable and a Feedback value specified by g_Feedback;

;Then calls SystemFuntion036 to create the keys used for encryption - Note the use of

;g_pDESXKey, g_Feedback

.text: loc_730348BF:
.text:
.text: mov esi, 0C0000001h
.text: jmp loc_73056157
.text: _LsaInitializeProtectedMemory@0 endp

Code Listing 13 - Disassembly and Analysis of RTM LsaInitializeProtectedMemory

Windows Vista Security Internals

25

VISTA SP1 LsaInitializeProtectedMemory()

.text: _LsaInitializeProtectedMemory@0 proc near

<…snip> ; variables and function startup stuff

.text: stosd ; “Store string” instruction – puts contents of EAX into address at EDI

 ; this is done four times (only showing one here)

.text: push ebx
.text: push ebx

.text: stosw ; “Store string” instruction for AX

.text: push offset a3des ; "3DES"
.text: push offset ?h3DesProvider@@3PAXA

.text: stosb ; “Store string” instruction for AL

.text: mov [ebp+var_24], ebx
.text: mov [ebp+var_28], ebx
.text: mov [ebp+var_20], ebx
.text: call _BCryptOpenAlgorithmProvider@16

 ; First instance of call to new CNG Dll – Bcrypt.dll!BcryptOpenAlgorithmProvider

 ; Here the 3DES algorithm provider has been opened

.text: mov esi, eax
.text: cmp esi, ebx
.text: jl loc_71AF59FB
.text: push ebx
.text: push ebx
.text: push offset aAes ; "AES"
.text: push offset ?hAesProvider@@3PAXA
.text: call _BCryptOpenAlgorithmProvider@16

 ; Open the AES algorithm provider

.text: mov esi, eax
.text: cmp esi, ebx
.text: jl loc_71AF59FB
.text: push ebx
.text: push 20h
.text: push offset aChainingmodecb
.text: mov edi, offset aChainingmode
.text: push edi
.text: push ?h3DesProvider@@3PAXA
.text: call _BCryptSetProperty@20

 ; Set the 3DES provider to use the BCRYPT_CHAIN_MODE_CBC mode for symmetric keys

.text: mov esi, eax
.text: cmp esi, ebx
.text: jl loc_71AF59FB
.text: push ebx
.text: push 20h
.text: push offset aChainingmodecf
.text: push edi
.text: push ?hAesProvider@@3PAXA
.text: call _BCryptSetProperty@20

 ; Set the AES provider to use the BCRYPT_CHAIN_MODE_CFB mode for symmetric keys

.text: mov esi, eax
.text: cmp esi, ebx
.text: jl loc_71AF59FB
.text: push 4
.text: pop edi
.text: push ebx
.text: lea eax, [ebp+var_20]
.text: push eax

--= CONTINUED =--

Code Listing 14 - Disassembly and Analysis of SP1 LsaInitializeProtectedMemory

Windows Vista Security Internals

26

.text: push edi

.text: lea eax, [ebp+var_24]

.text: push eax

.text: push offset aObjectlength

.text: push ?h3DesProvider@@3PAXA

.text: mov [ebp+var_20], edi

.text: call _BCryptGetProperty@24

 ; BCryptGetProperty – get the size of the key object for 3DES

.text: mov esi, eax
.text: cmp esi, ebx
.text: jl loc_71AF59FB
.text: cmp [ebp+var_20], edi
.text: jnz loc_71AF59E6
.text: push ebx
.text: lea eax, [ebp+var_20]
.text: push eax
.text: push edi
.text: lea eax, [ebp+var_28]
.text: push eax
.text: push offset aObjectlength
.text: push ?hAesProvider@@3PAXA
.text: mov [ebp+var_20], edi
.text: call _BCryptGetProperty@24

; BCryptGetProperty – get the size of the key object for AES

.text: mov esi, eax
.text: cmp esi, ebx
.text: jl loc_71AF59FB
.text: cmp [ebp+var_20], edi
.text: jnz loc_71AF59E6
.text: mov eax, [ebp+var_28]
.text: mov ecx, [ebp+var_24]

<…snip – VirtualAlloc init…>

.text: test eax, eax
.text: jz loc_71B14AC8
.text: mov edi, ?CredLockedMemory@@3PAXA
.text: mov eax, [ebp+var_24]
.text: add eax, edi
.text: push 2
.text: mov [ebp+var_2C], eax
.text: push 18h
.text: lea eax, [ebp+var_1C]
.text: push eax
.text: push ebx
.text: call _BCryptGenRandom@16

; BCryptGenRandom – fill a buffer with random bytes

.text: mov esi, eax
.text: cmp esi, ebx
.text: jl loc_71AF59FB
.text: push ebx
.text: push 18h
.text: lea eax, [ebp+var_1C]
.text: push eax
.text: push [ebp+var_24]
.text: push edi
.text: push offset ?h3DesKey@@3PAXA
.text: push ?h3DesProvider@@3PAXA
.text: call _BCryptGenerateSymmetricKey@28

; Generate the Symmetric Key with 3DES

.text: mov esi, eax
.text: cmp esi, ebx

--= CONTINUED =--

Windows Vista Security Internals

27

.text: jl short loc_71AF59FB

.text: push 2

.text: push 10h

.text: lea eax, [ebp+var_1C]

.text: push eax

.text: push ebx

.text: call _BCryptGenRandom@16

.text: mov esi, eax

.text: cmp esi, ebx

.text: jl short loc_71AF59FB

.text: push ebx

.text: push 10h

.text: lea eax, [ebp+var_1C]

.text: push eax

.text: push [ebp+var_28]

.text: push [ebp+var_2C]

.text: push offset ?hAesKey@@3PAXA

.text: push ?hAesProvider@@3PAXA

.text: call _BCryptGenerateSymmetricKey@28

; Generate the Symmetric Key with AES

.text: mov esi, eax
.text: cmp esi, ebx
.text: jl short loc_71AF59FB
.text: push 2
.text: push 10h
.text: push offset ?InitializationVector@@3PAEA

; reference the IV

.text: push ebx
.text: call _BCryptGenRandom@16
.text: mov esi, eax
.text: cmp esi, ebx
.text: jl short loc_71AF59FB
.text: xor esi, esi
.text:

<…snip…>

.text:
.text: call _LsaCleanupProtectedMemory@0
.text: jmp short loc_71AF59EA
.text: _LsaInitializeProtectedMemory@0 endp

--= END =--

Windows Vista Security Internals

28

Vista RTM LsaEncryptMemory

.text: ?LsaEncryptMemory@@YGXPAEKH@Z proc near
.text:
.text: var_110 = dword ptr -110h
.text: var_10C = dword ptr -10Ch
.text: var_108 = byte ptr -108h
.text: var_4 = dword ptr -4
.text: arg_0 = dword ptr 8
.text: arg_4 = dword ptr 0Ch
.text: arg_8 = dword ptr 10h

.text: mov edi, edi
.text: push ebp
.text: mov ebp, esp
.text: sub esp, 110h
.text: mov eax, ___security_cookie
.text: xor eax, ebp
.text: mov [ebp+var_4], eax
.text: push esi
.text: mov esi, [ebp+arg_0]
.text: test esi, esi
.text: jz short loc_730180B0
.text: push ebx
.text: mov ebx, [ebp+arg_4]
.text: test ebx, ebx
.text: jz short loc_730180AF
.text: test bl, 7
.text: jnz loc_730560F7
.text: shr ebx, 3
.text: mov eax, ?g_Feedback@@3_KA

; unsigned __int64 from LsaInitializeProtectedMemory

.text: mov [ebp+var_110], eax

.text: mov eax, dword_731171EC

.text: mov [ebp+var_10C], eax

.text: jz short loc_730180AF

.text: lea eax, [ebp+var_110]
.text: push eax
.text: push [ebp+arg_8]
.text: dec ebx

.text: push ?g_pDESXKey@@3PAU_desxtable@@A ; DES table; key plus whitening

.text: push esi

.text: push esi

.text: push 8

.text: push offset _desx@16 ; DESX function

.text: call _CBC@28 ; Cipher block chain mode – performs the encryption

.text: add esi, 8

.text: test ebx, ebx

.text: jnz short loc_73018089

.text:

.text: loc_730180AF:

.text:

.text: pop ebx

.text:

.text: loc_730180B0:

.text:

.text: mov ecx, [ebp+var_4]

.text: xor ecx, ebp

.text: pop esi

.text: call @__security_check_cookie@4

.text: leave

.text: retn 0Ch

.text: ?LsaEncryptMemory@@YGXPAEKH@Z endp

Code Listing 15 - Disassembly and Analysis of RTM LsaEncryptMemory

Windows Vista Security Internals

29

Vista SP1 LsaEncryptMemory

.text: ?LsaEncryptMemory@@YGXPAEKH@Z proc near
.text:
.text: var_1C = dword ptr -1Ch
.text: var_18 = dword ptr -18h

.text: var_14 = byte ptr -14h ; ptr for IV

.text: var_4 = dword ptr -4

.text: arg_0 = dword ptr 8 ; uchar *

.text: arg_4 = dword ptr 0Ch ; ulong

.text: arg_8 = dword ptr 10h ; int – 0 or 1

.text:

.text:

.text: mov edi, edi

.text: push ebp

.text: mov ebp, esp

.text: sub esp, 1Ch

.text: mov eax, ___security_cookie

.text: xor eax, ebp

.text: mov [ebp+var_4], eax

.text: mov eax, [ebp+arg_0]

.text: mov ecx, ?h3DesKey@@3PAXA

.text: xor edx, edx

.text: cmp eax, edx

.text: mov [ebp+var_18], 8

.text: mov [ebp+var_1C], edx

.text: jz short loc_71AD9D0B

.text: cmp [ebp+arg_4], edx

.text: jz short loc_71AD9D0B

.text: test byte ptr [ebp+arg_4], 7

; mask ulong arg_4 with 00000111

.text: push esi
.text: push edi
.text: mov esi, offset ?InitializationVector@@3PAEA
.text: lea edi, [ebp+var_14]

.text: movsd ; movsd = mov dword from ESI to EDI – here the IV is being moved into

;the pointer specified by var_14. Four movsd means 128 bits
.text: movsd
.text: movsd
.text: movsd

.text: jnz loc_71B14AB6 ; If not zero after 128 bits, Go to AES stuff

.text:

.text: loc_71AD9CE4:

.text:

.text: mov esi, [ebp+arg_8]

.text: sub esi, edx ; Encrypt or Decrypt?

.text: jz short loc_71AD9D2F ; 0 = Decrypt

.text: dec esi

.text: jnz short loc_71AD9D09

.text: push edx

.text: lea esi, [ebp+var_1C]

.text: push esi

.text: push [ebp+arg_4]

.text: lea esi, [ebp+var_14]

.text: push eax

.text: push [ebp+var_18]

.text: push esi

.text: push edx

.text: push [ebp+arg_4]

.text: push eax

.text: push ecx

.text: call _BCryptEncrypt@40 ; Encrypt data

--= CONTINUED =--

Code Listing 16 - Disassembly and Analysis of SP1 LsaEncryptMemory

Windows Vista Security Internals

30

.text:
.text: loc_71AD9D09:
.text:
.text: pop edi
.text: pop esi
.text:
.text: loc_71AD9D0B:
.text:
.text: mov ecx, [ebp+var_4]
.text: xor ecx, ebp
.text: call @__security_check_cookie@4
.text: leave
.text: retn 0Ch
.text: ?LsaEncryptMemory@@YGXPAEKH@Z endp

 ; Jump location for the AES key

.text: ; ---
.text: loc_71B14AB6:
.text: mov ecx, ?hAesKey@@3PAXA
.text: mov [ebp+var_18], 10h
.text: jmp loc_71AD9CE4
.text: ; ---

 ; Jump location for the Decrypt function

.text: ; ---

.text: loc_71AD9D2F:

.text: push edx

.text: lea esi, [ebp+var_1C]

.text: push esi

.text: push [ebp+arg_4]

.text: lea esi, [ebp+var_14]

.text: push eax

.text: push [ebp+var_18]

.text: push esi

.text: push edx

.text: push [ebp+arg_4]

.text: push eax

.text: push ecx

.text: call _BCryptDecrypt@40 ; Decrypt data

.text: jmp short loc_71AD9D09

.text: ; ---

--= END =--

Windows Vista Security Internals

31

Observations of Analysis

It is obvious that Microsoft has significantly changed the implementation of algorithms to protect

password hashes stored in memory. The DESX algorithm is no longer used for this purpose as of

Vista SP1 and Windows Server 2008. Other changes are listed below:

- Most of the encryption process is self-contained in pre-SP1 code (LSASRV.dll); in SP1,

LSASRV.dll makes external calls to BCrypt.dll to provide these functions

- There are no SystemFunctionXXX()calls in SP1 encryption/decryption of in-memory

password hashes

- The CNG API provides all cryptographic functions for password hashes stored in memory in

SP1

The new CNG API is implemented by BCrypt.dll primarily, with storage support provided by

NCrypt.dll and kernel support implemented in Ksecdd.sys. The algorithms that provide protection

of in memory password hashes in Vista SP1 3are DES and AES.

Although the algorithms have changed, the existing tools of the trade that could extract in memory

password hashes attacked the keys or used DLL injection – can we do the same in Vista SP1? Is the

implementation of the algorithms similar enough so that the same basic techniques can be applied

to obtain the in memory hashes? DLL injection – particularly with LSASS – can be problematic due

to the concept of Integrity Levels in Vista for system services. ASLR may also make this difficult.

Another technique was to find the encryption key in memory and use that to just read the hashes

right out of memory.

The corresponding presentation to this paper will demonstrate the possibility of obtaining the in-

memory hashes by utilizing similar techniques as existing toolsets.

Challenges to Extracting the Hashes

Some of the challenges already identified to obtaining the password hashes stored in-memory on

Vista SP1 are listed here:

- Different base address of LSASRV.dll on each boot (ASLR)

- Integrity Mechanism/Levels make DLL injection more difficult

- Different algorithms used for encryption/decryption – i.e. – cannot swap code and offsets

from other tools

- Current research indicates the key and IV used during encryption of the hashes in memory

are not available after the encrypt/decrypt function, or they are modified in a way that

prevents direct re-use. This research is still on-going, however.

This author does not believe these challenges to be permanent and is looking for solutions to

address these challenges. By sharing this information with the InfoSec community, perhaps others

can discover solutions to these items, because it can be assumed that the malicious community has

done/will do so soon.

Windows Vista Security Internals

32

APPENDIX

References & Tools:

Pass the Hash Toolkit – Hernan Ochoa, Core Security

- http://oss.coresecurity.com/projects/pshtoolkit.htm

- http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D1T1%20-

%20Hernan%20Ochoa%20-%20Pass-The-Hash%20Toolkit%20for%20Windows.pdf

Darun Grim Binary Diffing Suite – eEye Digital Security

- http://research.eeye.com/html/tools/RT20060801-1.html

Microsoft CNG SDK for Windows Vista and Windows Server 2008

- http://www.microsoft.com/downloads/details.aspx?familyid=1ef399e9-b018-49db-a98b-

0ced7cb8ff6f&displaylang=en

MSDN CNG Article:

- http://msdn.microsoft.com/en-us/magazine/cc163389.aspx

CNG and Vista SP1:

- Random number generator not FIPS compliant: http://support.microsoft.com/kb/954059

- http://msdn.microsoft.com/en-us/library/bb204775(VS.85).aspx

- http://msdn.microsoft.com/en-us/library/aa375534(VS.85).aspx

Microsoft Windows Platform SDK

- http://msdn.microsoft.com/en-us/windowsserver/bb980924.aspx

Microsoft DDK/Windows Driver Kit

- http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Windbg/Windows Debugging Tools

- http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Windows Communications Protocols:

- http://msdn.microsoft.com/en-us/library/cc216513(PROT.10).aspx

IDA Pro

- http://www.hex-rays.com/idapro/

OpenRCE

- http://www.openrce.org

PEBrowsePro

- http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html

