

WAF Virtual Patching Challenge:

Securing WebGoat with ModSecurity
Ryan Barnett

Breach Security (www.breach.com)
rbarnett@breach.com

Revision 1 (January 20, 2009)
Abstract

In this paper, we present the technical details behind a virtual
patch, which is a critical protection function provided by web
application firewalls (WAFs). A virtual patch is a powerful,
agile mitigation strategy to quickly help protect vulnerable
web applications from remote compromise. During the course
of this whitepaper, we will evaluate a number of example
vulnerabilities from the OWASP WebGoat application. The
context of these examples helps to quantify the significant
research responsibilities of the virtual patch writer, and
highlights how ModSecurity’s rules language and advanced
capabilities afford security consultants with a platform to
mitigation complex vulnerabilities identified within a web
application.

Introduction
Organizations are now realizing that traditional security products such as network
firewalls, intrusion detection systems (IDS) and intrusion prevention systems
(IPS) are not sufficient for protecting today’s web applications from compromise.
Network firewalls do not adequately analyze application layer protocol data for
signs of attack, intrusion detection systems do not take any action to stop an
attack that is detected and intrusion prevention systems suffer from a lack of
understanding the nuances of the HTTP traffic.

Two Separate Approaches to Remediation
Since network defenses miss attacks against vulnerable web applications, efforts
are therefore made to eliminate the risk by either securing the application with a
patch from development or deploying a web application firewall (WAF) in front
of the web application to protect it from attack.

Secur ing the Code
Many organizations have found that testing their applications for vulnerabilities
and then understanding and prioritizing the results require a great deal of
expertise. This is further expounded by the need to then communicate
information about vulnerabilities to the application developers for eventual

remediation in the code. Organizations without the necessary expertise are often
unable to fully understand the risk exposed by their applications and therefore do
not give it much prioritization.

The best option for most organizations is to outsource their security assessment to
a security service company. The service provides a complete assessment of
applications for vulnerabilities and analysis of results by security experts. This
ensures that results are free of false positives and properly prioritized. The
experts also work with an organization’s development team to ensure that the
vulnerability and remediation steps are well understood and properly
implemented.

All efforts to ensure that vulnerabilities are identified and then remediated by the
development team still expose organizations to an unacceptable degree of risk.
Remediating vulnerabilities in web applications is certainly not immediate as
commercial software vendors infrequently patch applications and updates for
internally developed applications require time for coding and testing. The end
result is that the patching process takes a while and there is a significant window
of opportunity where web applications are unprotected and the vulnerability can
be exploited.

Web Application Firewalls
Web application firewalls (WAFs) eliminate the gap in network security defenses
with specific technologies for applying application context-specific granular
analysis of web traffic to block attacks and can revolutionize the approach taken
for mitigating identified web application vulnerabilities. A WAF analyzes web
requests before the traffic is sent to the web application and is able to block
malicious web traffic; not just passively detect it.

WAFs include granular analysis capabilities specific to web applications that
permit extremely precise validation of application communication. Web
application firewalls inspect everything from user entry fields to URLs, and
headers as well as monitor user sessions and cookies, and block any leakage of
sensitive data. One significant feature offered by a WAF is a “virtual patch”
functionality that protects web applications from a discovered vulnerability when
normal software patches cannot be applied and the web application is at risk. A
virtual patch is a powerful, scalable protection against compromise.

Web application firewalls can protect applications against most threats, but not
everything. One particular weakness is business logic flaws. If an application is
performing as designed, it is difficult for a WAF to determine that something
wrong has occurred from a security perspective. WAFs often require
customization to most efficiently protect more complex applications.

Organizations need a new security solution.

Vir tual Patching – A Stronger Combined Solution
A better solution is to combine the results of an assessment with the virtual
patching capability of a web application firewall to immediately remediate
identified vulnerabilities in web applications. Organizations will be able to
virtually eliminate their period of risk exposure between identifying and patching
vulnerabilities.

Goals
The goal with this paper is to present a virtual patching framework that
organizations can follow to maximize the timely implementation of virtual patches,
as well as, to demonstrate how the ModSecurity web application firewall can be
used to remediate a sampling of vulnerabilities in the OWASP WebGoat
application.

What is a Vir tual Patch?

The term virtual patching was originally coined by Intrusion Prevention System
(IPS) vendors a number of years ago. It is not a web application specific term, and
may be applied to other protocols however currently it is more generally used as a
term for Web Application Firewalls (WAF). It has been known by many different
names including both External Patching and Just-in-time Patching. Whatever term
you choose to use is irrelevant. What is important is that you understand exactly
what a virtual patch is. Therefore, I present the following definition:

A policy for an intermediary device (i.e. - Web Application Firewall - WAF)
that is able to identify and block attempts to exploit a specific application
vulnerability.

The virtual patch works since the WAF analyzes transactions and intercepts attacks
in transit, so malicious traffic never reaches the web application. The resulting
impact of virtual patch is that, while the actual source code of the application itself
has not been modified, the exploitation attempt does not succeed.

Why Not Just Fix the Code?
From a purely technical perspective, the number one remediation strategy would be
for an organization to correct the identified vulnerability within the source code of
the web application. This concept is universally agreed upon by both web
application security experts and system owners. Unfortunately, in real world
business situations, there arise many scenarios where updating the source code of a
web application is not easy. Common roadblocks to source code fixes include:

Patch Availability
If a vulnerability is identified within a commercial application, the customer most
likely will not be able to modify the source code themselves. In this situation, the
customer is held at the mercy of the Vendor as they have to wait for an official
patch to be released. Vendors usually have extremely rigid patch release dates,
which mean that an officially supported patch may not be available for an extended
period of time.

Installation Time
Even in situations where an official patch is available, or a source code fix could be
applied to a custom coded application, the normal patching processes of most
organizations is time consuming. This is usually due to the extensive regression
testing required after code changes. It is not uncommon for these testing gates to
be measured in months. For example, the Symantec Internet Threat Report [1]
stated that the average time it took for organizations to patch their systems was 55
days, while the Whitehat Security Web Security Statistics Report [2] documented
that their customers time-to-fix average was 138 days to remediate SQL Injection
vulnerabilities found in their web applications. Now contrast this patching data
with the fact that Symantec also reported that it only took an average of 6 days for
exploit code to be released to the public and it becomes clear that traditional source
code patching processes are not adequate.

Fixing Custom Code is Cost Prohibitive
Web assessments that include source code reviews, vulnerability scanning and
penetration tests will most assuredly identify vulnerabilities in your web
application. Identification of the vulnerability is only the first half of the battle
with the second half being the remediation actions. What many organizations are
finding out is that the cost associated with the identification of the vulnerabilities
often pales in comparison to that of actually fixing the issues. This is especially
true when vulnerabilities are not found early in the design or testing phases but
rather after an application is already in production. In these situations, it is usually
deemed that it is just too expensive to recode the application.

Legacy Code
An organization may be using a commercial application and the vendor has gone
out of business, or they are using a version that is no longer supported by the
vendor. In these situations, legacy application code can’t be patched. An
additional situation is when an organization is forced into using outdated vendor
code due to in-house custom coded functionality being added on top of the original
vendor code. This functionality is tied to a mission critical business application
and prior upgrade attempts broke functionality.

Outsourced Code
As more and more businesses opt to outsource their application development, they
are finding that executing vulnerability fixes would require an entirely new project.

Many organizations are facing the harsh reality that poor contractual language
oftentimes does on cover “secure coding” issues but only functional defects.

Value of Vir tual Patching

When you consider the numerous situations when organizations can’t simply
immediately edit the source code, the value of virtual patching becomes apparent.
From an organizations perspective, the benefits are:

• It is a scalable solution as it is implemented in few locations vs. installing
patches on all hosts.

• It reduces risk until a vendor-supplied patch is released or while a patch is
being tested and applied.

• There is less likelihood of introducing conflicts as libraries and support
code files are not changed.

• It provides protection for mission-critical systems that may not be taken
offline.

• It reduces or eliminates time and money spent performing emergency
patching.

• It allows organizations to maintain normal patching cycles.

From a web application security consultant’s perspective, virtual patching opens up
another avenue for providing services to your clients. Traditionally, if source code
could not be updated for any of the reasons previously specified, there wasn’t much
else a consultant could do to help. Now, a consultant can offer to create virtual
patches to externally address the issues outside of the application code.

Why ModSecur ity?
While there are other web application firewall applications, ModSecurity is
uniquely qualified as the premier option. This is mainly attributed to two factors.
First, ModSecurity is an open source, free web application firewall. The fact that
there is no cost associated with its use is primarily why it is the most widely
installed WAF with more than 10,000 installations woldwide. Second, it boasts a
robust rules language and has a number of unique capabilities (outlined below)
which allows it to mitigate complex vulnerabilities.

Robust HTTP and HTML Parsing
ModSecurity employs an HTTP and HTML parser to analyze the input stream. The
parser is able to understand specific protocol features including content encoding
such as chunked encoding or multipart/form-data encoding, request and response
compression and even XML payload.
In addition the parser is flexible as the environment protected as many headers and
protocol elements are not used according to RFC requirements. For example, while
the RFC requires a single space between the method and the URI in the HTTP
request line, Apache allows any sequence of whitespace between them. Another
example is PHP unique use of parameters: in PHP leading and trailing spaces are
removed from parameter names.

In a proxy deployment a stricter parsing may be acceptable, but ModSecurity is
deployed a manner in which only a copy of the data inspected, the WAF has to be
at least as flexible as the web server in order to prevent evasion. IDS/IPS systems
that fail to do so can be easily evaded by attackers. [3]

Protocol Analysis

Based on the parsed info, ModSecurity must break up the HTTP stream into logical
entities that can be inspected, such as headers, parameters and uploaded files. Each
element is inspected separately not just for its content, but also for its length and
count. In addition ModSecurity must correctly divide the network stream when
keep-alive HTTP connections are used to unique request and replies, and correctly
match requests and replies.

Anti-Evasion Capabilities
Modern protocols such as HTTP and HTML allow the same information to be
presented in multiple ways. As a result signature based detection of attacks must
inspect the attack vector in any form it may be in. Attackers evade detection
systems by using a less common presentation of the attack vector. Some common
evasion techniques include using different character encodings for the attack vector
or using none canonized path names. In order to prevent evasion ModSecurity
transforms the request to a normalized form before inspection.

While modern IDPS systems may support anti-evasion techniques, those are
limited to well defined parts of the request such as the URI. ModSecurity can
selectively employ normalization functions for different input fields for each
inspection performed. For example, while an IDPS would normalize the URI,
ModSecurity can normalize an HTML form field that accepts path names as input.

Rules instead of Signatures
Virtual patches must implement complex logic, as it cannot rely solely on
signatures and requires a more robust rules language to define the tests. For
example, the following features exist in the ModSecurity rules language:

 Operators and logical expressions – can check an input field for attributed
other than its content, such as its size or character distribution.
Additionally ModSecurity can combine such atoms to create more
complex conditions using logical operators. For example, it may inspect if
a field length is too long only for a specific value of another field, or
alternatively check if two different fields are empty.

 Selectable anti-evasion transformation functions – as discussed above,
each rule can employ specific transformation function.

 Variables, sessions & state management – since the protocols inspected
keep state, the rules language needs to include variables. Such variables
can persist for a single transaction, for the life of a session, or globally.
Using such variables enables ModSecurity to aggregate information and
therefore detect an attack based on multiple indications during the life
span of a transaction or a session. Attacks that require such mechanisms
to detect are brute force attacks, application layer denial of service attacks
and business logic flaws.

 Control structures – the ModSecurity rules language includes control
structures such as conditional execution. Such structures enable
ModSecurity to perform different rules based on transaction content. For
example, if the transaction payload is XML, an entirely different set of
rules may be used.

A Vir tual Patching Methodology
Virtual Patching, like most other security processes, is not something that should
be approached haphazardly. Instead, a consistent, repeatable process should be
followed that will provide the best chances of success. The following virtual
patching workflow mimics the industry accepted practice for conducting IT
Incident Response and consists of the following phases: Preparation,
Identification, Analysis, Virtual Patch Creation, Implementation/Testing, and
Recovery/Follow T Up.

Preparation Phase
The importance of properly utilizing the preparation phase with regards to virtual
patching cannot be overstated. The idea is that you need to do a number of things
to setup the virtual patching processes and framework prior to actually having to
deal with an identified vulnerability, or worse yet, react to a live web application
intrusion. The point is that during a live compromise is not the ideal time to be
proposing installation of a web application firewall and the concept of a virtual
patch. Tension is high during real incidents and time is of the essence, so lay the
foundation of virtual patching when the waters are calm and get everything in place
and ready to go when an incident does occur. Here are a few critical items that
should be addressed during the preparation phase:

• Ensure that you are signed up for on all vendor alert mail-lists for
commercial software that you are using. This will ensure that you will be
notified in the event that the vendor releases vulnerability information and
patching data.

• Virtual Patching Pre-Authorization – Virtual Patches need to be
implemented quickly so the normal governance processes and
authorizations steps for standard software patches need to be expedited.

Since virtual patches are not actually modifying source code, they do not
require the same amount of regression testing as normal software patches. I
have found that categorizing virtual patches in the same group as Anti-
Virus updates or Network IDS signatures helps to speed up the
authorization process and minimize extended testing phases.

• Deploy ModSecurity In Advance - As time is critical during incident
response, it would be a poor time to have to get approvals to install new
software. You can install ModSecurity in embedded mode on your Apache
servers, or an Apache reverse proxy server. The advantage with this
deployment is that you can create fixes for non-Apache back-end servers.
Even if you do not use ModSecurity under normal circumstances, it is best
to have it “on deck” ready to be enabled if need be.

• Increase Audit Logged – The standard Common Log Format (CLF) utilized
by most web servers does not provide adequate data for conducting proper
incident response. Consider the following Apache access_log entry:

80.87.72.6 - - [22/Apr/2007:18:55:53 --0400] \

"POST /xmlrpc.php HTTP/1.1" 200 293

We see that this request uses a POST Request Method. This means that
critical data such as the Request Body (where the client is passing
parameter data) is not logged. Without the full request payloads, it is next
to impossible to accurately confirm either an attack attempt or a successful
compromise. Fortunately, ModSecurity has a robust audit logging engine
that is able to capture the entire request and response payloads. The
following audit log entry is for the same xmlrpc.php request we showed
from the Apache access_log file.

--ddb9bf17-A--
[22/Apr/2007:18:55:53 --0400] dGgsYX8AAAEAABJkpY8AAACG
80.87.72.6 41376 192.168.1.133 80

--ddb9bf17-B--

POST /xmlrpc.php HTTP/1.1

TE: deflate,gzip;q=0.3
Connection: TE, close

Host: www.example.com

User-Agent: libwww-perl/5.805

Content-Length: 201

--ddb9bf17-C--
<?xml
version="1.0"?><methodCall><methodName>test.method</methodNa
me><params><param><value><name>',''));echo'_begin_';echo
`id;ls/;w`;echo
'_end_';exit;/*</name></value></param></params></methodCall>

As you can see, now that we can see the request body contents, we are able
to identify that the client is attempting to exploit the php application and is
attempting to execute OS command injection.

Identification Phase
The Identification Phase occurs when an organization becomes aware of a
vulnerability within their web application. There are generally two different
methods of identifying vulnerabilities: Proactive and Reactive.

Proactive Identification
This occurs when an organization takes it upon themselves to assess their web
security posture and conducts the following tasks:

• Vulnerability assessment (internal or external) and penetration tests
• Source code reviews

These tasks are extremely important for custom coded web applications as there
would be external entity that has the same application code.

Reactive Identification
There are three main reactive methods for identifying vulnerabilities:

• Vendor contact (e.g. pre-warning) - Occurs when a vendor discloses a
vulnerability for commercial web application software that you are using.

• Public disclosure - Public vulnerability disclosure for commercial/open
source web application software that you are using. The threat level for
public disclosure is increased as more people know about the vulnerability.

• Security incident – This is the most urgent situation as the attack is active.
In these situations, remediation must be immediate. Normal network
security response measures include blocking the source IP of the attack at a
firewall or edge security device. This technique does not work as well for
web application attacks as you may prevent legitimate users from accessing
the application. A virtual patch is more flexible as it is not necessarily
where an attacker is coming from but what they are sending.

Analysis Phase
There are a number of tasks that must be completed during the analysis phase.

What is the name of the vulnerability?
This means that you need to have the proper CVE name/number identified by the
vulnerability announcement, vulnerability scan, etc…

What is the impact of the problem?
It is always important to understand the level of criticality involved with a web
vulnerability. Information leakages may not be treated in the same manner as an
SQL Injection issue.

What versions of software are affected?
You need to identify what versions of software are listed so that you can determine
if the version(s) you have installed are affected.

What configuration is required to tr igger the problem or how to tell if you are
affected by the problem?
Some vulnerabilities may only manifest themselves under certain configuration
settings.

Is proof of concept exploit code available?
Many vulnerability announcements have accompanying exploit code that shows
how to demonstrate the vulnerability. If this data is available, make sure to
download it for analysis. This will be useful later on when both developing and
testing the virtual patch.

Is there a work around available without patching or upgrading?
This is where virtual patching actually comes into play. It is a temporary work-
around that will buy organizations time while they implement actual source code
fixes.

Is there a patch available?
Unfortunately, vulnerabilities are often announced without an accompanying patch.
 This leaves organizations exposed and is why virtual patching has become an
invaluable tool. If there is a patch available, then you initiate the proper patch
management processes and simultaneously create a virtual patch.

Vir tual Patch Creation Phase
The process of creating an accurate virtual patch is bound by two main tenants:

1. No false positives. Do not ever block legitimate traffic under any
circumstances. This is always the top priority.

2. No false negatives. Do not miss attacks, even when the attacker
intentionally tries to evade detection. This is a high priority.[4]

The virtual patch creator must keep these priorities, and their relative ordering, in
mind at all times. A key distinction between virtual patch construction philosophies
(log-only mode vs. a blocking mode) lies in the relative ranking of these two goals.
The art of creating blocking virtual patches is generalizing the detection logic as
much as possible to rigorously meet rule #2, without ever violating rule #1.

Der iving a Zero False Negative Vir tual Patch
When performing technical vulnerability research, the virtual patch writer must
first search for all of the necessary conditions for an attack to succeed. The
researcher starts by obtaining technical data that triggers the vulnerability remotely
(perhaps from proof of concept exploit code). The writer then varies or fuzzes all
the “interesting-looking” parts of the attack. Changes are made one at a time, in
steps, keeping careful notes. (Strings, length values, character encoding, white

space… the list goes on. All are good things to vary.) If the attack succeeds even
when a particular variable is set to a random value, that variable is not important
for the virtual patch criteria. Eventually the researcher can identify the complete
set of variables that are important to the attack’s success, and arrive at a set of
criteria that must be collectively satisfied for any attack to succeed. If there are
multiple distinct attack vectors, the researcher must perform this analysis on each
one separately.

Given a set of criteria that must be satisfied for an attack to succeed, it is possible
to describe virtual patching logic that has zero false negatives. That is, an attack
simply cannot succeed unless the associated web application attack traffic has
exactly the characteristics that the virtual patch is looking for.

Der iving a Zero False Positive Vir tual Patch
Given a zero false negative virtual patch as previously described, the writer must
also evaluate the accuracy of patch in terms of false positives. At this stage, the
writer attempts to identify at least one characteristic that would never occur in
normal web traffic. If a characteristic exists that is both anomalous compared to
normal traffic and critical to the attack’s success, then the zero false negative
virtual patch is also a zero false positive signature.

Negative Secur ity Vir tual Patches
A negative security model (or misuse based detection) is based on a set of rules
that detect specific known attacks rather than allow only valid traffic. It is
important to note that the differentiation between negative and positive security
models is subjective and reflects how tight the security envelope around the
application is. A good example would be limiting the characters allowed in an
input field. Since the character set is a closed set, providing a white list of
permitted characters is actually similar to providing a black list of forbidden
characters including the characters complementing the 1st group.

Positive Secur ity Vir tual Patches
Positive security model is a comprehensive security mechanism that provides an
independent input validation envelope to an application. The model specifies the
characteristics of valid input (character set, length, etc…) and denies anything that
does not conform. By defining rules for every parameter in every page in the
application the application is protected by an additional security envelop
independent from its code.

Which Method is Better for Vir tual Patching – Positive or Negative Secur ity?
A virtual patch may employ either a negative or positive security model. Which
one you decide to use depends on the situation and a few different considerations.
For example, negative security rules can usually be implemented more quickly,
however the possible evasions are more likely.

Positive security rules, only the other hand, provides better protection however it is
often a manual process and thus is not scalable and difficult to maintain for

large/dynamic sites. While manual positive security rules for an entire site may not
be feasible, a positive security model can be selectively employed when a
vulnerability alert identifies a specific location with a problem.

Beware of Exploit-Specific Vir tual Patches
You want to resist the urge to take the easy road and quickly create an exploit-
specific rule. While it may provide some immediate protection, its long term value
is significantly decreased. A case study of this concept in the IDS world is
"bleeding edge" snort signature for Bugtraq vulnerability #21799. This
vulnerability in the Cacti open source graphing software was picked quite at
random. The exploit references on Bugtraq vulnerabilities archive is:

/cacti/cmd.php?1+1111)/**/UNION/**/SELECT/**/2,0,1,1,127.0.0
.1,null,1,null,null,161,500, proc,null,1,300,0, ls -la >
./rra/suntzu.log,null,null/**/FROM/**/host/*+11111

And the Snort signature is:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(
msg:"BLEEDING-EDGE WEB Cacti cmd.php Remote Arbitrary
SQL Command Execution Attempt"; flow:to_server,established;
uricontent:"/cmd.php?"; nocase;
uricontent:"UNION"; nocase;
uricontent:"SELECT"; nocase;
reference:cve,CVE-2006-6799; reference:bugtraq,21799;
classtype: web-application-attack; sid:2003334; rev:1;
)

While snort has some anti-evasion techniques such as case insensitivity and URI
decoding, this signature still falls short of detecting an exploit of the vulnerability.
It is gears only towards detecting the specific attack vector shown above. Any other
exploit such as blind SQL injection would not be detected. It also searches for the
keywords only in the request line, while many development environments would
allow for parameters to be provided both in the POST and GET payload.

Additionally this signature is prone to false positives as both select and union are
common English words and since the signature do not require any word delimiters
the signature will also be satisfied by the words "Selection" and "Reunion". In
many cases such a signature has to be turned off.

For examples of poorly written ModSecurity rules, let’s look at the following
GotRoot rule:

SecDefaultAction "log,deny,phase:2,status:500,t:urlDecodeUni, \
t:htmlEntityDecode,t:lowercase"

WEB-CGI csSearch.cgi arbitrary command execution attempt
SecRule REQUEST_URI "/csSearch\.cgi\?" chain
SecRule REQUEST_URI "\`"

In the first line, the SecDefaultAction is specifying the use of the “t:lowercase”
transformation function. This is often used to normalize input data for anti-

evasion. When this is used, care should be taken to specify only lowercase letters
in the operator payload section. In this rule example, however, the rule writer
mistakenly used mixed-case and thus this rule would not trigger (false negative).

Implementation/Testing Phase

In order to accurately test out the newly created virtual patches, it may be
necessary to use an application other than a web browser. Some useful tools are:

• Command line web clients such as Curl and Wget.

• Local Proxy Servers such as WebScarab
(://www.owasp.org/index.php/Category:OWASP_WebScarab_Project) and
Burp Proxy (://www.portswigger.net/suite/).

• ModSecurity AuditViewer (://www.jwall.org/web/audit/viewer.jsp) –
which allows you to load a ModSecurity audit log file, manipulate it and
then re-inject the data back into any web server.

These tools will allow you to manipulate the request data in any way desired.

ModSecur ity’s Debug Log File
In order to verify exactly how your new rule is working, you should review the
ModSecurity SecDebugLog file data. The Debug log provides extensive details on
the rule processing order and in many cases is the only true way to verify that the
rule is working exactly as you expected. You will most likely need to increase the
SecDebugLogLevel directive setting to get enough detail to validate the patch
processing. You can selectively increase the logging based on source IP address so
that you don’t impact performance on the entire web server. Below is an excerpt of
the debug log data during rule processing (some data deleted for readibility):

Recipe: Invoking rule 82211d8.
Executing operator !rx with param "^(POST)$" against
REQUEST_METHOD.
Target value: POST
Operator completed in 17 usec.
Rule returned 0.
No match, not chained -> mode NEXT_RULE.
Recipe: Invoking rule 82214b0.
Rule returned 0.
No match, not chained -> mode NEXT_RULE.
Recipe: Invoking rule 82360d0.
Executing operator !rx with param "^(\w{0,32})$" against
ARGS:username.
Target value:
00
00
00
00
Operator completed in 13 usec.
Rule returned 1.

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project�
http://www.portswigger.net/suite/�
http://www.jwall.org/web/audit/viewer.jsp�

Match, intercepted -> returning.
Access denied with code 501 (phase 2). Match of "rx ^(\w{0,32})$"
against "ARGS:username" required. [id "1"] [msg "Postparameter
username failed validity check. Value domain: Username."]
[severity "ERROR"]

Recovery/Follow-Up Phase
Although you may need to expedite the implementation of virtual patches, you
should still track them in your normal Patch Management processes. This means
that you should create proper change request tickets, etc… so that their existence
and functionality is documented.

You should also have periodic re-assessments to verify if/when you can remove
previous virtual patches if the web application code has been updated with the real
source code fix. I have found that many people opt to keep virtual patches in place
due to better identification/logging vs. application or db capabilities.

Secur ing WebGoat with ModSecur ity
In the summer of 2008, Stephen Craig Evans lead an OWASP Summer of Code
(SoC) Project entitled: Securing WebGoat with ModSecurity
(://www.owasp.org/index.php/OWASP_Securing_WebGoat_using_ModSecurity_
Project). The goal of the project was stated as:

The purpose of this project is to create custom ModSecurity rule sets that,
in addition to the Core Set, will protect WebGoat 5.2 Standard Release
from as many of its vulnerabilities as possible (the goal is 90%) without
changing one line of source code.

I was one of the official project reviewers. This seemed to me to be simultaneously
a great challenge (as there are many vulnerabilities within WebGoat that are
complex to address externally) and extremely practical. Providing a full
description of every one of the approximately 50 lessons and their mitigations is
beyond the scope of this whitepaper, however I will be presenting a selected few
that I feel highlight some rather cutting-edge solutions.

Cross-site Scr ipting (XSS)
Improper html output entity encoding of user supplied data, which exposes clients
to Cross-site Scripting (XSS) attacks, is pretty much universally seen as the the #1
security vulnerability facing web applications. Just take a look at such resources as
the Top Ten, Web Application Security Statistics Project or the Sla.ckers " so it
begins" mail-list thread for evidence of the widespread existence of sites that are
vulnerable to XSS attacks. Depending on the web application language your site is
using, it most likely has some form of output encoding capabilities that can be
configured to help mitigate the issue. Ivan Ristic also recently outlined some high
level coding concepts to help address XSS.

http://www.owasp.org/index.php/OWASP_Securing_WebGoat_using_ModSecurity_Project�
http://www.owasp.org/index.php/OWASP_Securing_WebGoat_using_ModSecurity_Project�
http://www.owasp.org/index.php/Top_10_2007-A1�
http://www.webappsec.org/projects/statistics/�
http://sla.ckers.org/forum/read.php?3,44�
http://sla.ckers.org/forum/read.php?3,44�
http://www.owasp.org/index.php/Top_10_2007-A1�
http://blog.modsecurity.org/2008/07/do-you-know-how.html�

The purpose of this section is to outline how to use ModSecurity to help address
not only XSS attacks but to also address the underlying vulnerability, which is to
detect web applications that aren't properly output encoding data. We will also
show some offensive techniques aimed at short circuiting XSS SessionID stealing
by fixing any cookies that are missing the HTTPOnly flag.

Blocking Inbound Reflected XSS Attacks

In the Cross-Site Scripting (XSS) -> LAB: Reflected XSS Attack, an attacker can
send malicious javascript in the “Enter your three digit access code” field -

The subsequent request payload would look similar to the following:

POST /WebGoat/attack?Screen=185&menu=900 HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.9.0.5) Gecko/2008120122 Firefox/3.0.5
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://localhost:8080/WebGoat/attack?Screen=185&menu=900
Cookie: JSESSIONID=D7B05470E93E267EFA86A13E31A293F8
Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=
Content-Type: application/x-www-form-urlencoded
Content-Length: 134

QTY1=1&QTY2=1&QTY3=1&QTY4=1&field2=4128+3214+0002+1999&field1=%3CS
CRIPT%3Ealert%28document.cookie%29%3B%3C%2FSCRIPT%3E&SUBMIT=Purcha
se

XSS - Negative Secur ity

The Core Rule set, which is available for free from the ModSecurity website,
includes a robust negative security rule set for XSS detection. The current version

of the rule set uses complex logic combining two different operators; @pm set-
based pattern matching used for fast pre-qualification of data to identify the
existence of key XSS strings, and then @rx regular expression rules to apply
advanced checks to both confirm XSS logic and exclude false positives. For this
particular issue, we can create a new chained, targeted rule set that applies the
checks to the correct location and parameter.

<Location /WebGoat/attack>

SecRule ARGS:field1 "@pm jscript onsubmit copyparentfolder
javascript meta onmove onkeydown onchange onkeyup activexobject
expression onmouseup ecmascript onmouseover vbscript: <![cdata[
http: settimeout onabort shell: .innerhtml onmousedown onkeypress
asfunction: onclick .fromcharcode background-image: .cookie
ondragdrop onblur x-javascript mocha: onfocus javascript:
getparentfolder lowsrc onresize @import alert onselect script
onmouseout onmousemove background application .execscript
livescript: getspecialfolder vbscript iframe .addimport onunload
createtextrange onload <input" \

"chain,t:urlDecodeUni,t:htmlEntityDecode,t:compressWhiteSpace,t:lo
wercase,ctl:auditLogParts=+E,log,auditlog,msg:'Cross-site
Scripting (XSS)
Attack',id:'950004',tag:'WEB_ATTACK/XSS',logdata:'%{TX.0}',severit
y:'2'"

SecRule ARGS:field1
"(?:\b(?:(?:type\b\W*?\b(?:text\b\W*?\b(?:j(?:ava)?|ecma|vb)
|application\b\W*?\bx-
(?:java|vb))script|c(?:opyparentfolder|reatetextrange)|get(?
:special|parent)folder|iframe\b.{0,100}?\bsrc)\b|on(?:(?:mo(
?:use(?:o(?:ver|ut)|down|move|up)|ve)|key(?:press|down|up)|c
(?:hange|lick)|s(?:elec|ubmi)t|(?:un)?load|dragdrop|resize|f
ocus|blur)\b\W*?=|abort\b)|(?:l(?:owsrc\b\W*?\b(?:(?:java|vb
)script|shell|http)|ivescript)|(?:href|url)\b\W*?\b(?:(?:jav
a|vb)script|shell)|background-
image|mocha):|s(?:(?:tyle\b\W*=.*\bexpression\b\W*|ettimeout
\b\W*?)\(|rc\b\W*?\b(?:(?:java|vb)script|shell|http):)|a(?:c
tivexobject\b|lert\b\W*?\(|sfunction:))|<(?:(?:body\b.*?\b(?
:backgroun|onloa)d|input\b.*?\btype\b\W*?\bimage)\b|
?(?:(?:script|meta)\b|iframe)|!\[cdata\[)|(?:\.(?:(?:execscr
ip|addimpor)t|(?:fromcharcod|cooki)e|innerhtml)|\@import)\b)
" \

"capture,t:htmlEntityDecode,t:compressWhiteSpace,t:lowercase
"

</Location>

While these generic XSS attack detection rules are extremely effective, they still
employ the negative security model and thus are subject to evasion issues. This is
why utilizing a positive security model for input validation is the preferred method.

XSS - Positive Secur ity

Here in the example: the “field1” parameter should only accept 3 digits in length.

The following custom ModSecurity rule can provide proper positive security input
validation for this parameter:

<Location /WebGoat/attack>

SecRule &ARGS_POST_NAMES:field1 "@eq 0"
"phase:2,t:none,t:urlDecodeUni,t:normalisePathWin,t:lowercas
e,deny,log,auditlog,msg:'Input Validation Alert – Field1
Argument Missing in Post Payload',logdata:'%{MATCHED_VAR}'"

SecRule &ARGS_POST_NAMES:field1 "@gt 1"
"phase:2,t:none,t:urlDecodeUni,t:normalisePathWin,t:lowercas
e,deny,log,auditlog,msg:'Input Validation Alert – Multiple
Field1 parameters.',logdata:'%{MATCHED_VAR}'"

SecRule ARGS_POST:field1 "!^\d{3}$"

"phase:2,t:none,t:urlDecodeUni,t:normalisePathWin,t:lowercas
e,deny,log,auditlog,msg:'Input Validation Alert – Data not
in the correct format.',logdata:'%{MATCHED_VAR}'"

This rule set will help to prevent evasion attempts by ensuring that there is only 1
argument called “field1”, that it is only present within the post_payload data and
that it has the proper format and length. Keep in mind that this type of input
validation should also be incorporated within the application itself. The main
reasons for implementing this type of positive security filter at the web application
firewall layer are for general security-in-depth and also for those web applications
where updating the code is either not possible or will take a very long time.

Application Defect Identification – Missing Output Encoding

ModSecurity does not currently manipulate inbound or outbound data so it can not,
by itself, be used to entity encode user data that is returned in output. While this is
true, ModSecurity can be utilized to identify when web applications are failing to
properly html entity encode user data in output.

The following ModSecurity rule set will generically identify both Stored and
Reflected XSS attacks where the inbound XSS payloads are not properly output
encoded. For Reflected XSS attacks, the rules will identify inbound user supplied
data that contains dangerous meta-characters, then store this data as a custom
variable in the current transaction collection and inspect the outbound
RESPONSE_BODY data to see if it contains the exact same inbound data. If
proper outbound entity encoding of meta-characters is not utilized by the web
application then the user supplied data in the response will exactly match the
captured inbound data. This is effective at catching XSS attacks that utilize the
“<script>alert(‘XSS’)</script>” type of checks typically sent during web
assessments.

XSS Detection - Missing Output Encoding

SecAction "phase:1,nolog,pass,initcol:global=xss_list"

Identifies Reflected XSS
If malicious input (with Meta-Characters) is echoed back in the
reply non-encoded.
SecRule &ARGS "@gt 0" \
"chain,phase:4,t:none,log,auditlog,deny,status:403,id:'1',msg:'Pot
entially Malicious Meta-Characters in User Data Not Properly
Output Encoded.',logdata:'%{tx.inbound_meta-characters}'"

SecRule ARGS "([\'\"\(\)\;<>/])" \
"chain,t:none,capture,setvar:global.xss_list_%{time_epoch}=%

{matched_var},setvar:tx.inbound_meta-characters=%{matched_var}"
SecRule RESPONSE_BODY "@contains %{tx.inbound_meta-

characters}" "ctl:auditLogParts=+E"

For Stored XSS attacks, instead of the looking at the response body returned for the
current transaction, we need to be able to identify if this user supplied data shows
up in other parts of the web application. The following additional rule addresses
this issue by capturing the same inbound data and then storing it in a persistent
global collection. On subsequent requests by any client, the response body payload
is inspected to see if it contains any of the XSS strings captured in the global
collection.

Identifies Stored XSS
If malicious input (with Meta-Characters) is echoed back on any
page non-encoded.
SecRule GLOBAL:'/XSS_LIST_.*/' "@within %{response_body}" \
"phase:4,t:none,log,auditlog,pass, msg:'Potentially Malicious M
eta-Characters in User Data Not Properly Output
Encoded',tag:'WEB_ATTACK/XSS'"

Missing HTTPOnly Cookie Flags
If you are unfamiliar with what the HTTPOnly cookie flag is or why your web
apps should use it, please refer to the following resources –

• Mitigating Cross-site Scripting With HTTP-only Cookies -
://msdn.microsoft.com/en-us/library/ms533046.aspx

• OWASP HTTPOnly Overview - ://www.owasp.org/index.php/HTTPOnly

The bottom line is this - while this cookie option flag does absolutely nothing to
prevent XSS attacks, it does significanly help to prevent the #1 XSS attack goal
which is stealing SessionIDs. While HTTPOnly is not a "silver bullet" by any
means, the potential ROI of implement it is quite large. Notice I said "potential" as
in order to provide the intended protections, two key players have to work together
-

• Web Applications - whose job it is to append the "HTTPOnly" flag onto all
Set-Cookie response headers for SessionIDs, and

• Web Browsers - whose job it is to identify and enforce the security
restrictions on the cookie data so that javascript can not access the contents.

The current challenges to realizing the security benefit of the HTTPOnly flag is
that universal adoption in both web apps and browsers is still not there yet. For
example, depending on your web app platform, you may not have an

http://msdn.microsoft.com/en-us/library/ms533046.aspx�
http://www.owasp.org/index.php/HTTPOnly�

easy mechanism to implementing this feature. For example - in Java you could
following the example provided here on the OWASP site -
://www.owasp.org/index.php/HTTPOnly#Using_Java_to_Set_HTTPOnly,
however this doesn't work well for the JSESSIONID as it is added by the
framework. Jim Manico has been fighting the good fight to try and get Apache
Tomcat developers to implement his patch to add in HTTPOnly support -
://manicode.blogspot.com/2008/08/httponly-in-tomcat-almost.html. The point is
that with so many different web app development platforms, it isn't going to be
easy to find support for this within every web app that you have to secure...

In the HTTPOnly Test lesson, the user can toggle the use of the HTTPOnly flag on
cookie values.

The issue is that the web application did not set the HTTPOnly flag when issuing
the Set-Cookie and thus client side javascript has access to the document.cookie
data.

HTTP/1.x 200 OK
Server: Apache-Coyote/1.1
Pragma: No-cache
Cache-Control: no-cache
Expires: Wed, 31 Dec 1969 19:00:00 EST
Set-Cookie: JSESSIONID=42B2EEB960E859CBEF77597FF9D525DF;
Path=/WebGoat
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 3914
Date: Fri, 30 Jan 2009 23:28:15 GMT

One of my pet peevs with the web application security space is the stigma that is
associated with a WAF. Most everyone only focuses in on the negative security
and blocking of attacks aspects of the typical WAF deployment and they fail to
realize that WAFs are a highly specialized tool for HTTP. Depending on your
circumstances, you may not ever intend to do blocking. There are many other use-
cases for WAFs and how they can help, in this case as a tactical response tool to
help address an underlying vulnerability In this case, we could monitor when
back-end/protected web applications are handing out SessionIDs that are missing

http://www.owasp.org/index.php/HTTPOnly#Using_Java_to_Set_HTTPOnly�
http://manicode.blogspot.com/2008/08/httponly-in-tomcat-almost.html�

the HTTPOnly flag. This could raise an alert that would notify the proper
personnel that they should see if editing the web language code is possible to add
this feature in. A rule to do this with ModSecurity would look like this -

Identifies SessiondIDs without HTTPOnly flag

SecRule RESPONSE_HEADERS:/Set-Cookie2?/ "!(?i:\;? ?httponly;?)"
"chain,phase:3,t:none,pass,log,auditlog,msg:'AppDefect: Missing
HttpOnly Cookie Flag.'"
 SecRule MATCHED_VAR
"(?i:(j?sessionid|(php)?sessid|(asp|jserv|jw)?session[-
_]?(id)?|cf(id|token)|sid))" "t:none"

While this rule is pretty useful for identifying and alerting of the issue, many
organizations would like to take the next step and try and fix the issue. If the web
application does not have a way to add in the HTTPOnly cookie flag option
internally, you can actually leverage ModSecurity+Apache for this purpose.

ModSecurity has the ability to set environmental data that Apache reads/acts upon.
In this case, we can modify our previous rule slightly to use the "setenv" action and
then we add an additional Apache "header" directive that will actually overwrite
the data with new Set-Cookie data that includes the HTTPOnly flag -

Identifies SessiondIDs without HTTPOnly flag and sets the
"http_cookie" ENV Token for Apache to read
SecRule RESPONSE_HEADERS:/Set-Cookie2?/ "!(?i:\;? ?httponly;?)"
"chain,phase:3,t:none,pass,nolog"
 SecRule MATCHED_VAR
"(?i:(j?sessionid|(php)?sessid|(asp|jserv|jw)?session[-
_]?(id)?|cf(id|token)|sid))"
"t:none,setenv:http_cookie=%{matched_var}"

Now we use the Apache Header directive to set the new data
Header set Set-Cookie "%{http_cookie}e; HTTPOnly" env=http_cookie

The end result of this ruleset is that ModSecurity+Apache can transparently add on
the HTTPOnly cookie flag on the fly to any Set-Cookie data that you define.
Thanks goes to Brian Rectanus from Breach for working with me to get the Header
directive syntax correct.

One note of warning - make sure that you understand how the web application is
handling setting SessionIDs meaning if they are created server-side vs. client-side
(in javascript). This rule set will work fine if the SessionIDs are generated server-
side. If they are created client-side, however, this will disrupt session
management.

Hopefully the data presented here will help people who would like to have the
security benefit of this flag however are running into challenges with implementing
it within the app.

Cross-Site Request Forgery

The scenario for this lesson is that the user forum where the attacker is injecting the
CSRF code is on the same site/domain as the CSRF targeted web application. So
this means that initially blocking the CSRF injection would be feasible with the
XSS rules and/or positive security for the newsgroup form submission page.

What is more challenging would be to assume that this newsgroup could possibly
be hosted on a totally different website (possibly even hacker controlled). The
attacker is hoping that the victim would happen to be currently logged into the
target website at the same time they viewed the CSRF code page. Obviously, the
likelihood of this increases significantly if the CSRF vector is hosted on the same
site as the target app.

Assuming that the CSRF code is hosted on a separate site, the challenge from the
web application’s (and ModSecurity’s) point of view is that we may *only* see the
final request. It is for this reason that Anti-CSRF tokens are used. ModSecurity
has a Content Injection feature that allows it to either prepend or append data to the
response bodies sent to the client from the web application. We can use this
feature to inject our own JavaScript code that will update the relevant links and
form pages within the client’s browser to add a “MODSEC_CSRF_TOKEN”
value.
Instead of creating our own unique token value, we can instead utilize the
applications SessionID data that it hands out to clients in Cookies. We can inject
the same SessionID string into the CSRF tokens and then when subsequent
requests are submitted, we can enforce that the tokens exist and that the values
match that of the submitted Cookie data within the Request Header.

CSRF Protections
Enable Content Injection
SecContentInjection On

We need to create a session collection based on the Set-Cookie data
We will use the sessionid data later in macro expansion when we
inject the csrf token javascript

SecRule RESPONSE_HEADERS:/Set-Cookie2?/ "(?i:jsessionid=([a-f0-9]+)\;\s?)"
"phase:3,t:none,pass,log,capture,msg:'Captured
 session id from response cookie:
%{TX.1}',setsid:%{TX.1},setvar:session.sessionid=%{TX.1}

Enforce that requests have the csrf token and that it matches the
JSESSIONID data

SecRule &ARGS "@eq 1" "chain,phase:2,t:none,pass,nolog,skip:2"
 SecRule ARGS_NAMES "^MODSEC_CSRF_TOKEN$" "t:none"

SecRule &ARGS "@ge 1" \
"chain,phase:2,t:none,deny,log,ctl:auditLogParts=+E,msg:'CSRF Attack Detected -
Missing CSRF Token.'"
 SecRule &ARGS:MODSEC_CSRF_TOKEN "!@eq 1"

SecRule &ARGS "@ge 1" "chain,phase:2,t:none,deny,log,msg:'CSRF Attack Detected -
Invalid Token.'"
 SecRule ARGS:MODSEC_CSRF_TOKEN "!@streq %{request_cookies.jsessionid}"

Content Injection Section
We inject the javascript and use macro expansion for the session.sessionid
data

SecRule REQUEST_FILENAME "/WebGoat/attack"
"phase:4,t:none,nolog,pass,append:'<script language=\"JavaScript\"> \
\
var tokenName = \'MODSEC_CSRF_TOKEN\'; \
var tokenValue = \'%{session.sessionid}\'; \
\
function updateTags() { \
\
 var all = document.all ? document.all :
document.getElementsByTagName(\'*\'); \
 var len = all.length; \
\
 for(var i=0; i<len; i++) { \
 var e = all[i]; \
 \
 updateTag(e, \'src\'); \
 updateTag(e, \'href\'); \
 } \
} \
\
--CUT--
updateTags(); \
updateForms(); \
\
</script>'"

After these rules are applied, the WebGoat links and forms now include the
MODSEC_CSRF_TOKEN data.

Authentication Flaws – Hidden Parameter Manipulation
In both lessons, the attacker alters a value of a hidden field during a login process.
The lesson is that the application is keeping track of hidden data that the user can
manipulate.

For this particular lesson, one method of fixing this issue is to parse the response
html for hidden field data and saving it for later inspection. It is important to
understand that accurate parsing of outbound html is challenging. Yes, storing this
type of data in hidden fields is a bad idea; however the real problem is that the
back-end should be tracking the use/reuse of this data. With that in mind, it is
possible to skip parsing the response html payloads and simply focus on when the
hidden_tan and parameters are first submitted. When this happens, you can easily
store this data in a Session collection (tied once again to the JSESSIONID) and
then check on future requests that these values are not re-submitted.

For Multi-level Login 2 – all you have to do is store the original username
submitted (user2) and then ensure that it matches the hidden_user argument
submitted later. If it doesn’t match then you can deny.

Here are some example rules:

Initiate the session collection based on the JSESSIONID

SecAction "phase:1,t:none,pass,nolog,setsid:%{REQUEST_COOKIES.JSESSIONID}, \
setuid:%{session.username}"

Capture the submitted username during login for tracking/display in Mod audit
logs

SecRule ARGS:'/^user/' ".*" "phase:2,t:none,pass,nolog,capture, \
setvar:session.username=%{TX.0},setuid:%{TX.0}"

If this is the first time we have seen the "hidden_tan" and "tan" parameters,
we store the data in the session collection and skip the security checks.
We have to give the session variables unique names so that we have unique values

SecRule &SESSION:'/(hidden_tan|tan)/' "@eq 0" \
"chain,phase:2,t:none,pass,nolog,skip:2"

SecRule ARGS:hidden_tan ".*" "chain,capture, \
setvar:session.hidden_tan_%{time_epoch}=%{TX.0}"

SecRule ARGS:tan ".*"
"capture,setvar:session.tan_%{time_epoch}=%{TX.0}

If we get here, then we have saved parameter data in the session collection to

check against the currently submitted data. We can use the wildcarding RegEx
capabilities of the session collection variable to allow us to inspect all
of the saved unique parameter names.
If any of the submmited hidden_tan/tan data matches what was already saved,
then this is session replay attack.

SecRule SESSION:'/HIDDEN_TAN_*/' "@streq %{ARGS.HIDDEN_TAN}" \
"phase:2,t:none,log,auditlog,deny,msg:'Previous Hidden Tan Data Used.'"

SecRule SESSION:'/TAN_*/' "@streq %{ARGS.TAN}" \
"phase:2,t:none,deny,log,auditlog,msg:'Previous Hidden Tan Data Used.'"

Verify that the hidden_user data matches the username when they first logged in.

SecRule &ARGS:HIDDEN_USER "@eq 1" "chain,phase:2,t:none,deny,log, \
auditlog,msg:'Hidden User Parameter Manipulation.'"

SecRule SESSION:'/^user/' "!@streq %{ARGS.HIDDEN_USER}"

Virtual patching is an interesting use-case concept, however it is best if we can
“generically” attempt to address the underlying vulnerability. In the case of these
two lessons, it is relatively easy to implement some virtual patches to address the
vulnerability once you have knowledge about the exact attack vector parameter
names. What would be great is to try and achieve the same level of protection
without knowing the names of these parameters…

In a real-world application, the approach of parsing the response bodies for hidden
data values, storing it and then comparing it on subsequent requests has merit. As I
stated previously, it is not needed for the context of these two WebGoat lessons (as
the issue is not with the first submittal of data but ones that come later), however in
real applications there exists issues with altering hidden fields that go beyond
replay attacks and can be a problem if the first person manipulates them. In this
case, you need to have some knowledge of outbound response body data so that
you can enforce it when it comes back in. Keep in mind that this technique is
difficult to get right mainly due to the combination of needing a good parser along
with the free text coding style of today’s Web 2.0 apps.

Following is an attempt to implement a generic outbound response body inspection
rule to identify/save any HIDDEN data elements and then recheck on subsequent
requests for the existence of the hidden parameter value name and ensure it
matches what was originally sent out.

SecRule SESSION:HIDDEN_ARG_NAME "!^$" "chain,phase:2,t:none,log,auditlog, \
deny,msg:'Hidden Parameter Manipulation.'"

SecRule ARGS_POST_NAMES "@contains %{SESSION.HIDDEN_ARG_NAME}" "chain"
SecRule REQUEST_BODY "!@contains %{SESSION.HIDDEN_ARG}"

"t:none,t:lowercase"

SecRule RESPONSE_BODY "<input.*name=[\"']?([\w\s]*)[\"']?[\s>]type=[\"']? \
(hidden)[\"']?[\s>]value=[\"']?(\w*)[\"']\s?>" "phase:4,t:none,t:lowercase, \
pass,nolog, capture,setvar:session.hidden_arg_name=%{tx.1}, \
setvar:session.hidden_arg=%{tx.1}=%{tx.3}"

This has not been tested rigorously for evasions, etc… but it seems to work well
for the 4.4 and 4.5 lessons. One possible limitation with these rules is that it may
not work correctly if there were multiple outbound HIDDEN elements. It is for
this reason that the use of of the Lua API within ModSecurity could be utilized.

The main advantage of using Lua scripts is that you can employ advanced operator
functions such as for/while loops. For instance, the following section of Lua code
for this same WebGoat lesson shows this type of for loop logic where it is
inspecting the response body contents and extracting out hidden data for later
inspection:

--
-- now read from file, grab hidden fields, & write back to data file
--
 local outstr -- this is used later to build output string

 -- open file first and put into string buffer
 fh = io.open("/etc/modsecurity/data/output3.txt", 'r')
-- local fh = assert(io.open(fname, "r"))
 local tbuff = fh:read("*a")
 fh:close()

 local fh2 = io.open("/etc/modsecurity/data/lessons1.data", "w+")

 for a in string.gmatch(tbuff, "<input .->") do
 t = {}

 for k, v in string.gmatch(a, "(%w+)='(.-)'") do
 t[k]=v
 end

 -- can modify this for other input types; remove for now
-- if t.type:lower() == "hidden" then

 -- write table to file in Entry format as described in chapters
'10.1 - Data Description' & '12 - Data Files and Persistence' in the Programming in
Lua online manual

-- Format:
-- Entry{
-- name = "...",
-- type = "...",
-- value = "..."
-- }
 if t.value == nil then -- e.g. for types such at TEXT and
PASSWORD
 t.value = ''
 end

 -- for <input type='BUTTON' onclick='validate();'
value='Submit'>
 if t.name == nil then
 t.name = ''
 end

 if fh2 then
 outstr = string.format("Entry{\n name = \"%s\",\n
type = \"%s\",\n value = \"%s\"\n}\n\n", t.name, t.type, t.value)
 fh2:write(outstr)
 m.log(9, "Luascript: now writing hidden values to
file lessons1.data")
 end
-- end
 end

The main advantage that Lua would have vs. using a standard ModSecurity
SecRule would be that Lua would be able to more accurately parse multiple hidden
data fields within a response body.

Conclusions
Virtual Patching for web applications is an indispensable remediation process as it
is able to provide protections that either wouldn’t be available through traditional
source code fixes or the time-to-fix length is just too long. While the ideal scenario
for vulnerability remediation is to actually fix the issues within the code,
ModSecurity’s robust rules language and advanced features (such as Content
Injection and Lua) offer an impressive platform for externally addressing web
application vulnerabilities.

References
[1] Symantec Internet Threat Report, H3, 2007.
[2] Whitehat Security Web Security Statistics, March 2008
[3] Ofer Shezaf, "ModSecurity Core Rule Set": An Open Source Rule Set for

Generic Detection of Attacks against Web Applications, OWASP AppSec
Conference 2007

[4] Victoria Irwin, The Science of Vulnerability Filters: A Virtual Software
Patch, TippingPoint Technologies, March 2004.

	Introduction
	Two Separate Approaches to Remediation
	Securing the Code
	Web Application Firewalls
	Virtual Patching – A Stronger Combined Solution

	Goals
	What is a Virtual Patch?
	The term virtual patching was originally coined by Intrusion Prevention System (IPS) vendors a number of years ago. It is not a web application specific term, and may be applied to other protocols however currently it is more generally used as a term...
	A policy for an intermediary device (i.e. - Web Application Firewall - WAF) that is able to identify and block attempts to exploit a specific application vulnerability.
	The virtual patch works since the WAF analyzes transactions and intercepts attacks in transit, so malicious traffic never reaches the web application. The resulting impact of virtual patch is that, while the actual source code of the application itse...
	Why Not Just Fix the Code?
	Patch Availability
	Installation Time
	Fixing Custom Code is Cost Prohibitive
	Legacy Code
	Outsourced Code

	Value of Virtual Patching
	When you consider the numerous situations when organizations can’t simply immediately edit the source code, the value of virtual patching becomes apparent. From an organizations perspective, the benefits are:

	Why ModSecurity?
	Robust HTTP and HTML Parsing
	Protocol Analysis
	Based on the parsed info, ModSecurity must break up the HTTP stream into logical entities that can be inspected, such as headers, parameters and uploaded files. Each element is inspected separately not just for its content, but also for its length and...
	Anti-Evasion Capabilities
	Rules instead of Signatures
	A Virtual Patching Methodology
	Preparation Phase
	Identification Phase
	Proactive Identification
	Reactive Identification

	Analysis Phase
	What is the name of the vulnerability?
	What is the impact of the problem?
	What versions of software are affected?
	What configuration is required to trigger the problem or how to tell if you are affected by the problem?
	Is proof of concept exploit code available?
	Is there a work around available without patching or upgrading?
	Is there a patch available?

	Virtual Patch Creation Phase
	Deriving a Zero False Negative Virtual Patch
	Deriving a Zero False Positive Virtual Patch
	Negative Security Virtual Patches
	Positive Security Virtual Patches
	Which Method is Better for Virtual Patching – Positive or Negative Security?
	Beware of Exploit-Specific Virtual Patches

	Implementation/Testing Phase
	In order to accurately test out the newly created virtual patches, it may be necessary to use an application other than a web browser. Some useful tools are:
	Command line web clients such as Curl and Wget.
	Local Proxy Servers such as WebScarab (Uhttp://www.owasp.org/index.php/Category:OWASP_WebScarab_ProjectU) and Burp Proxy (Uhttp://www.portswigger.net/suite/U).
	ModSecurity AuditViewer (Uhttp://www.jwall.org/web/audit/viewer.jspU) – which allows you to load a ModSecurity audit log file, manipulate it and then re-inject the data back into any web server.
	ModSecurity’s Debug Log File
	Recovery/Follow-Up Phase
	Securing WebGoat with ModSecurity
	Cross-site Scripting (XSS)
	XSS - Negative Security
	XSS - Positive Security
	Application Defect Identification – Missing Output Encoding
	Missing HTTPOnly Cookie Flags

	Cross-Site Request Forgery
	The scenario for this lesson is that the user forum where the attacker is injecting the CSRF code is on the same site/domain as the CSRF targeted web application. So this means that initially blocking the CSRF injection would be feasible with the XSS ...
	What is more challenging would be to assume that this newsgroup could possibly be hosted on a totally different website (possibly even hacker controlled). The attacker is hoping that the victim would happen to be currently logged into the target websi...
	Authentication Flaws – Hidden Parameter Manipulation
	For this particular lesson, one method of fixing this issue is to parse the response html for hidden field data and saving it for later inspection. It is important to understand that accurate parsing of outbound html is challenging. Yes, storing this...
	For Multi-level Login 2 – all you have to do is store the original username submitted (user2) and then ensure that it matches the hidden_user argument submitted later. If it doesn’t match then you can deny.
	Here are some example rules:

	Conclusions

