RFIDIOts!!!

Hacking RFID Without A Soldering Iron
(or a Patent Attorney)

Adam Laurie
adaml@algroup.co.uk

http://trifinite.org
http://rfidiot.org

Black Hat DC Briefings, 2008
Washington DC, USA
Who Am I?

- The Bunker non-exec
- Co-Publisher APACHE-SSL
- DEFCON 'goon'
- Open Source developer / researcher
 - Bluetooth
 - RFID
 - Full Disclosure / White Hat!
- Freelance research / training / lecturing
What do I do?
What is RFID?

- Radio Frequency IDentification
 - Radio Frequency or Magnetically Coupled chip
 - Chip is passive
 - Energy from reader activates the chip
'Dumb' vs 'Smart'

• Dumb: Simple ID/Data only
 - Door Entry Systems
 • e.g. HID

• Smart: Smartcards
 - Payment Cards
 • e.g. London Transport Oyster
 - Biometrics
 • Passports
'Dumb' RFID – Moo am I?

- Animal ID
- Hotel Keys
- Car Immobilisers
- Ski Passes
- Goods Labels
- Luggage Handling
- Vending
- Human Implants
Selling the idea of Human Implants

DOCTOR FUN

16 Jan 2006

WE WANT TO IMPLANT THIS RFID TAG IN YOU.

THAT VIOLATES MY RIGHTS!

WE WANT TO IMPLANT THIS RFID TAG IN YOU AND IT’S ALSO A CELLPHONE, DIGITAL CAMERA, AND MP3 PLAYER.

↑ WRONG

RIGHT →

COOL!

Copyright © 2006, David Farley, d-farley@ibiblio.org
http://ibiblio.org/Dave/drfun.html

This cartoon is made available on the Internet for personal viewing only. Opinions expressed herein are solely those of the author.
Human Implants

- Military
 - Access Control
- Mental Patients
 - Tracking
- Beach Bars
 - Digital Wallets
Unique ID!!!

- Cannot be cloned
Unique ID?

- DIY Cloning Units
 - http://cq.cx/vchdiy.pl

Spot the original?
Unique ID?

- DIY Cloning Units
 - http://cq.cx/vchdiy.pl

Spot the original?

- Industry Defence:
Unique ID?

Spot the original?

- DIY Cloning Units
 - http://cq.cx/vchdiy.pl

- Industry Defence:

 “These 'clones' do not have the same form factor and are therefore not true clones”
2nd Line of Defence
2nd Line of Defence

• Security by Patent Attorney?
2nd Line of Defence

• Security by Patent Attorney?
 - HID vs IOActive
2nd Line of Defence

- Security by Patent Attorney?
 - HID vs IOActive
 - “HID Responds to Staged Proximity Card Cloning”
 - “IOActive Provides Clarification on HID Dispute”
Unique ID?

- Readers cannot 'see' so form factor irrelevant
Unique ID?

- Readers cannot 'see'
 so form factor
 irrelevant
Cloning Devices
The Challenge

- Create a 'true' clone
 - Same ID
 - Same Form Factor
Understanding the ID

- Industry standard example
 - Animal Tagging
 - ISO-11784/5 FDX-B

 - Application flag (Animal/Non-Animal)
 - 3 Digit Country or Manufacturer code
 - National ID
Sending the ID

- Reader and TAG will communicate with
 - Specific frequency
 - 125/134.2 kHz - 'dumb'
 - 13.56 Mhz - 'smart'
 - Specific data bitrate
 - RF/2 - RF/128
 - Specific encoding (modulation) scheme
 - FSK, Manchester, BiPhase, PSK, NRZ
 - Specific bit patterns
 - Header / Data / CRC
Decoding the ID

- 8 Byte raw ID from 'dumb' reader

<table>
<thead>
<tr>
<th>Byte 7</th>
<th>Byte 6</th>
<th>Byte 5</th>
<th>Byte 4</th>
<th>Byte 3</th>
<th>Byte 2</th>
<th>Byte 1</th>
<th>Byte 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>National ID</td>
<td></td>
<td></td>
<td></td>
<td>Country</td>
<td></td>
<td></td>
<td>Application Code</td>
</tr>
</tbody>
</table>

- Reverse MSB/LSB
- Reverse each Nibble
- Right shift (x2)
- Convert to Decimal
Decoding the ID

- **8 Byte raw ID**

<table>
<thead>
<tr>
<th>70</th>
<th>91</th>
<th>53</th>
<th>12</th>
<th>EA</th>
<th>6F</th>
<th>00</th>
<th>01</th>
</tr>
</thead>
</table>

- Reverse MSB/LSB

<table>
<thead>
<tr>
<th>10</th>
<th>00</th>
<th>F6</th>
<th>AE</th>
<th>21</th>
<th>35</th>
<th>19</th>
<th>07</th>
</tr>
</thead>
</table>

- Reverse each Nibble

| 80 | 00 | F6 | 57 | 48 | CA | 89 | 0E |
Decoding the ID

- 8 Byte raw ID

<table>
<thead>
<tr>
<th>80</th>
<th>00</th>
<th>F6</th>
<th>57</th>
<th>48</th>
<th>CA</th>
<th>89</th>
<th>0E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F6</td>
<td></td>
<td></td>
<td>CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application ID</td>
<td>Country</td>
<td>National ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>F65</td>
<td>748CA890E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Country F65 rightshifted: 3D9 \(\equiv\) '985' decimal
 - icar.org: 'Destron Fearing / Digital Angel Corporation'

- National ID 748CA890E \(\equiv\) '31286003982'
Encoding the ID

• Reverse the decoding process

• Add Header / CRC to raw binary ID
 - Fixed bits embedded in ID prevent header being duplicated in datastream

• Now we have 128 bits of raw bit-level ID
 - How do we deliver it?
Multi-Format Transponders

• Why make 10 transponder types when you can make 1?
 – Lower manufacturing costs
 – Lower stocking/distribution costs
 – Convenience
Multi-Format Transponders

- Independently configurable parameters
 - Q5
 - Configuration for Bit Rate, Modulation etc.
 - 224 Bits user programmable memory
 - Dump <n> data blocks on wakeup
 - Multiple 'personalities'
 - Hitag2
 - Configuration for 'Public Modes'
 - 256 Bit user programmable memory
 - Dump <n> data blocks on wakeup as per Mode setting
Sending the ID

• Take a redundant Door Entry tag
 – Re-Set configuration as appropriate

 • Bit Rate
 • Modulation
 • Inversion

 • Number of blocks to dump on 'wakeup'

 – Program data blocks with raw ID
Demonstration

• Clone Trovan 'Unique' TAG
 - Access Control System

• Clone ISO 11784 'Animal' TAG (FDX-B)
 - Cow Implant
 - VeriChip paperweight
RFID implanted chip threats

- Track individuals
- Target individuals
- Impersonate individuals
 - Gain access to restricted areas
 - Provide alibi for accomplice!
- 'Smart' Bombs
 - Device only goes off if target of sufficient rank is in range.
'Smart': Encryption is your friend

- RFID Enabled
- 'Biometric' passports

- 48 Items of Data
 - Fingerprint
 - Facial Image
 - Birth Certificate
 - Home Address
 - Phone Numbers
 - Profession
Keys to your kingdom

- Pseudo random UID
 - Cannot determine presence of specific passport without authentication

- Strong Authentication
 - Basic Access Control
 - 3DES

- Content Encryption
 - Extended Access Control
Deriving the Keys

- MRZ – Machine Readable Zone
- Key – Document Number, Date of Birth, Expiry Date
ePassport Demonstration

Select EF.SOD: File Length: 2054
Reading: 00000
EF.SOD stored in /tmp/EF_SOD.BIN

Select DG1:
615b5f1f
File Length: 93
Reading: 00000
EF.DG1 stored in /tmp/EF_DG1.BIN
EF.DG1: Data Length: 88

Decoded Data: P<AUSKENNEDY<<<<<<<<

Document code: P=
Issuing State or Organisation: AUS
Name: KENNEDY<<<<<<<<
Passport Number:
Check Digit: 8
Nationality: AUS
Date of Birth:
Check Digit: 5
Sex: F
Date of Expiry: 151208
Check Digit: 5
Personal Number or other optional elements:

Select DG2:
File Length: 23391
Reading: 00000
EF.DG2: JPEG image stored in /tmp/EF_DG2.JPG
EF.DG2 stored in /tmp/EF_DG2.BIN
ePassport Modification

• “Not Possible” due to cryptographic signatures
 - Certificate Authority (CA) not verifiable
 • Signatures provided by document
 • CA Key provided by same document
 • Public Key Directory PKD now available
 - As of April 2007
 - 15 Participating Countries

• Self-Signed Forgery may not be detected!
ePassport Certificates

New Zealand genuine:

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 1122333666 (0x42e573e2)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=NZ, O=Government of New Zealand, OU=Passports, OU=Identity Services Passport CA

Validity

Not After : May 18 12:00:00 2012 GMT

Subject: C=NZ, O=Government of New Zealand, OU=Passports, OU=MRTD, CN=Document Signer 200701241034

Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)

Modulus (2048 bit):

...

...
ePassport Certificates

New Zealand forgery:

Certificate:
Data:
Version: 3 (0x2)
 Serial Number: 1122333666 (0x42e573e2)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=NZ, O=Government of New Zealand, OU=Passports, OU=Identity Services Passport CA
Validity
 Not After : May 18 12:00:00 2012 GMT
 Subject: C=NZ, O=Government of New Zealand, OU=Passports, OU=MRTD, CN=Document Signer

Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)

 Modulus (2048 bit):
 ...

Other ePassport threats

- Key data may be obtained through other channels
- Passport profiling
 - Determine country of origin without logging in
 - Implementation errors:
 - Australian passport does not start with '08' on select
 - Australian passport does not require Basic Auth on 'File Select', only on 'File Read'.
- Target specific passport holders
 - Bomb that works for Australians only...
New For BH DC - “Chappy”

- ChAP.py
 - Chip And PIN (in python)
 - PC/SC Smartcard
 - EMV
 - Visa
 - MasterCard
 - Maestro
 - Amex
RFIDIOt

- Open Source Python library
- Hardware independent
 - ACG
 - Frosch
 - PCSC-Lite
 - OpenPCD coming soon

http://rfidiot.org
Questions?

http://rfidiot.org

adam@algroup.co.uk