Breakage

Jason Larsen

copyright IOActive, Inc. 2007, all rights reserved.
Who am I?

- Currently work for IOActive
- Spent the last five years doing SCADA research
- I don’t often get a chance to speak to security researchers
SCADA

• Supervisory Control and Data Acquisition
What do we know about SCADA?

• Controls physical systems
• Comes in two flavors
 – Supervisory Control
 – Momentary Control
SCADA vs. The Movies

- SCADA hacking has been a staple of Hollywood for a while
- Evil hackers use computers to kill people
- As a result, even non-computer people have some concept of SCADA hacking
Myth vs. Legend

• Lots of myths in SCADA
 – “Digital Pearl Harbor”
 – “Terrorist can take down the nation”
 – “I now have to fear my toaster”

• First let’s have a reality check
Live Free or Die Hard
“Power Grid Isn’t Connected”
Electric Power Connectedness

• If you had to hook together the most critical computer systems in the nation, you’d use a bullet-proof protocol right?
• One that had been well thought out and was easy to secure?
Electric Power Layout
(Finger Paint Version)
ICCP

- Complete TCP/IP Stack
- RFC Glue
- ISO Stack
- MMS Stack
- ASN.1
- Custom Protocol
- XML
“Only Super Hackers Can Get In”
Incidents

- JavaScript scans
- Extortion
- CIA statement
“Send all the Gas There”
Oil and Natural Gas Delivery

- Relief valves work really well
- Oil pipeline explosion in Russia
 - “…in June of 1982, a huge explosion occurred in the Siberian wilderness in the former Soviet Union. The yield was estimated at 3 kilotons…It had been implanted in the host software by a foreign intelligence service.”
Stages of a SCADA Attack

Access ➔ Discovery ➔ Control ➔ Damage ➔ Cleanup
Maximizing Damage

• Most public research has focused on access to the SCADA LAN and control of the process

• Very little information about how an attacker would maximize damage once he had achieved control
Big Equipment vs. Little Equipment

• Big equipment in a large process is generally easier to physically damage than tabletop equipment

• Only one public video of physical damage of big equipment
Aurora Project
Classes of Physical Damage

• Watching generators jump is fun, but are there other ways to physically damage equipment?
Example 1 - Water Hammers

QuickTime
Example 2 - Crunching Motors
Classes of Physical Damage

- Inertial Attacks
- Exclusion Attacks
- Resonance Attacks
- Wear Attacks
- Surge Attacks
- Latent Abilities
Inertial Attacks

• Heavy stuff doesn’t like to speed up or slow down
• This is the easiest and most common way to make physical equipment fail
• The larger the process, the more likely it can be accelerated to failure
Exclusion Attacks

- Some stuff isn’t supposed to happen at the same time
 - For example, the motor should never be operating if the oil pump isn’t on
Resonance Attacks

- Resonance attacks happen mostly in electrical power and water distribution
- Small variation in current or flow are conserved as a standing wave in another part of the system
- Continuing the small variations increases the size of the standing wave
- These are the hardest to pull off remotely
Wear Attacks

- Components have a finite lifespan
- Manipulating the controls can often significantly reduce the lifespan of the component
 - For example, keeping a clutch 90% of the way engaged
Surge Attacks

• “Send all the gas there now”
• Continuous systems are designed to handle only a certain amount of product at a time
• Exceeding those limits can cause physical damage
 – For example, filling a mixer 100% full instead of the normal 20%
Latent Abilities

• Building every piece of a process out of custom components is expensive
• Wherever possible, off-the-shelf components are used
• Off-the-shelf components are often manufactured for more than one purpose
 – For example, a motor that can run in reverse but is never used that way
Discovery

• Great, but we probably don’t have the engineer pointing out all the weaknesses
Information

- Equipment doesn’t come with a manual on how to physically damage it
- You either have to find the weak points or guess
- Guessing can be surprisingly effective
What you probably already have
Analyzing Ladder Logic for Clues
Ladder Logic

• In modern systems, most of the process safety depends on the logic in the controllers

• Analyzing tells you what the engineer that designed the process was worried about
Start at the Master Stop

- All roads that lead to the master stop are interesting
- It can be labeled any number of things—luckily labels are human readable
Ladder Logic

- This is a candidate for an exclusion attack
- The engineer wanted to make sure that a motor wasn’t running at the same time a valve was closed
Ladder Logic

- If the level is above 17, shut everything down
- Since this is in the ladder logic, we can override the shutdown
Operator’s Console

• Here’s a good candidate for a surge attack
• Did the engineer plan for both pumps to kick on at full power simultaneously?
Inertial and Resonance Attacks

- Test a control point
- Look for indications
- Maximize the indications
The test hit

• Pick a point to manipulate and manipulate it
Looking For Indications

- Valve1
- Analog1
- Analog2
- Analog3
Maximizing the Indications

• Other inputs you control may change the height of the peaks
• If two inputs produce peaks in the same values, they can be synchronized to produce waveform addition
• Fast-moving values more often lead to breakage
• Don’t get stuck on a single peak—often breakage occurs where you least expect it
Physical Damage

- Engineers try to take into account all the things that can go wrong in a process.
- This is no different than searching for buffer overflows in code.
- You’re looking for something the engineer missed.
Where do we have to be?

• How deep into the system you need to hack depends on two factors
 – How fast you need to manipulate the point
 – What layers of the system perform sanity checks
Where do we have to be?
The Defenders

• If physical damage isn’t instantaneous, the personnel running the process may try to stop the attacker

• As far as I know, no experimental data exists on the response time of the defenders
The Defenders

- Attackers can easily change the state of the defender’s display
- Defenders are often in noise-controlled offices, per OSHA
- Diversion???
Why Study Physical Damage?

• The current assumption is that the attacker will be stopped at the firewall
 – That really hasn't happened

• Current thread models only consider the process under malicious control doing what it was meant to do
Why Study Physical Damage?

• The worst-case scenario is physical damage to the process
• Hopefully, by understanding the worst case we can come up with a list of physical safeguards that need to be in place
Questions?

• Jason Larsen
• IOActive