
www.immunityinc.com

Information Operations Immunity
Style

Agenda

● Scenario
● Problems of scale when hacking

– Client-sides
● Immunity's PINK Framework
● Trojaning hard targets

– Immunity Debugger Parasitic Infection

Scenario

● Modeling attack on high value target
● Long scale attack
● Wide internal scope

IO simulation vs. Pen-test

● Modern pen-test is compressed timescale.
● IO is not. Time passes, collection occurs.
● Collection over time gives clear picture of the

network, people and data.
● No need for blind network scans or random

break-ins. First learn where to go.
● Exploit trust!

Soft direct approach

● Did not start with client-sides
– client-sides are somewhat blind

– detection is much easier for smart opponent

– hard to clean up after them

● Recon
– Intense versioning on mail server

– One box only

– No class-C scan

– No port scan of that one box

Soft direct approach - II

● Audit 3rd party AV-SPAM product on MTA
Gateway. Easier task than to look into core OS
components.

● Extensive file format parsing proven by many
researchers to be badly implemented.

● AV on gateways has to be hi-avail, which
means watchdogs and intensive exception-
handling. Memory corruptions handled or
process restarted.
– Gives unlimited exploitation trial.

Soft direct approach - III

● Model your target in lab.
● Vmware vs. Real Iron
● Language detection is key (CANVAS)
● Extensive modeling of your target in lab cuts

down the exploit development time by half.
● AV products vague about restarts and crashes.

Makes attempts less suspicious.
● Almost all breaks DEP and SafeSEH. Most

compiled with Borland = insecure heap
metadata.

Why not the web server

● Web server was on some random other ISP
– Dry content without useful logic

– hard targets are just that – HARD

– Even if we broke into the web server, no guarantee
of anything useful there

– Apache + IIS only players
● Hard to audit – large investment

Recon results

● MTA Gateway
– No big corporation can run without SPAM/Malware

filter

– Guaranteed to exist

– Hard to fingerprint – Protocol response is the best
way (now in CANVAS)

Audit results

● Heap overflow in unpacking (quite common)
● Exploitation vector:

– Email attachment

– Could be send to void user

– Scanned no matter what, than discarded

– Not much trace left even after failed exploitation

– DEP disabled, Watchdog restarts process

Custom Payload

● First a MOSDEF shell
● Than custom dll payload for email collection
● Hooks API within the AV process to get a copy

of the scanned email
● Stores email in achieve file for later collection
● Custom DLL injected into memory (MS

detours!) also PE header of a random product
DLL

● Also scans email content for keyword to
callback MOSDEF shell to encoded IP

Further breach

● Email collection over long period leads to
further breach

● DMZ to internal LAN cross over is simple with
acquired intelligence

● Exploiting trust is trivial at this point
● Now you know which internal box is high value

Further breach - II

● Broke into PDC with DNS msrpc exploit
● Obtained domain admin hash
● Installed executable remotely to high value

target using the admin hash (CANVAS)
● Recently accessed files folder had soft-links to

high value content but files were not on the
HDD

● USB drive!

Breaching the Air-Gap

● USB drive a goes between segmented
development network and the Internet network

● Error logs from 3rd party product is emailed to
the support group

● Error logs are generated in the same folder with
the high value content so high value content
travels with them!

● USBDumper comes to mind! -
http://www.secuobs.com/news/07062006-
sstic_usbdumper.shtml

Breaching the Air-Gap – II

● Modified USBDumper for in-memory injection
● Same DLL injection trick
● Added file tracking and disk free space tracking
● Once again, time passes.
● Eventually partial access to high value

“segmented” data
● Breach vector: Simply a tainted USB drive

Agenda

● Scenario
● Problems of scale when hacking

– Client-sides
● Immunity's PINK Framework
● Trojaning hard targets

– Immunity Debugger Parasitic Infection

Targets are ephemeral

● Time
– Your workstation turns on and off as you come to

work

● Location
– Your laptop travels across network security

boundaries

● Configuration
– Your server is upgraded, reconfigured, network

infrastructure changes around it

Command and Control in most
hacking platforms is a tree

Attacker

Target 1

Target 2 Target 3

Networks are not trees

● A fully connected graph is what we want
● Self routing with some human input

● This is a hugely expensive solution
● Management costs
● Development costs

● Need to emulate TCP over thousands of
protocols

● Those who don't use TCP are doomed
to re-implement it...

Building and storing routing tables is
a hard problem

● Harder for us due to covertness
● We don't want any node to have a larger

picture of all the other owned nodes than it
absolutely has to

● Automatic solutions are possible, but for now,
manual operation of routing is easiest

Scalability problems

● Management of one hundred ants is easy
– Picture of thirty million ants

● A good client-side vulnerability can be
used to own a quarter million boxes a day

● Future work involves self-directed worms

Asymmetric attack means we
need to not have a rack of

machines
● Portable C&C
● Scalable C&C
● Covert C&C
● Immunity's PINK infrastructure solves these

problems

Current Botnet C&C technology

● IRC
● HTTP to single server
● Fast-Flux of DNS Servers
● Storm P2P protocols

Covertness or Reliability?

● P2P is reliable, not covert
– Requires chatty communications on the network

– Difficult to pass through strict proxies

– Easily fingerprintable

PINK C&C Framework

C&C

Listening Posts

Targets

Dead Drops

Blog/Web/News
Searchers

Blogsearch

● Blog searching is the current best parasitic host
protocol for PINK
– Almost instantaneous responses

– Easy to find hosts for our blogs

– Lots of signal to hide in

● Any search engine will do though

PINK DEAD DROPS
● <Cover Text>

● <TRIGGER>

● <base 64><RSA Encrypted/Signed
Command></base64>

● <END TRIGGER>

● <More Cover Text>

Each Target is looking for
multiple triggers

● Goal is to divide our targets into manageable sets

– Per Country

– Per Company

– Per Domain

– Per Time-of-exploit

– etc
● “All hosts from immunityinc.com” please contact

listeningpost.my.com using HTTP MOSDEF on port 443

● All target.com's please deliver any .xls with “Payroll” string to
email address bob@example.com

Signed and Encrypted payloads
prevent replay attacks with

removal kits
● Triggers need to be signed with time-based key

as well
● Making triggers strings of random words makes

it hard for search engines to filter our requests

Client-side conclusions

● Currently in Beta-testing state – pushing out to
CANVAS shortly

● Parasitic C&C is:
– Nearly impossible to detect and monitor

– Easily re-targetable to any search engine or search
option on a web page

– Does not require expensive infrastructure to
maintain

Servers and hard targets

● Servers may not be able to contact us via
HTTP

● Need way to connect to stationary targets
behind firewalls and application proxies covertly

● Each target is different!
● Example target: MS SQL Server 2005 in strict

DMZ tier

Every web application is a unique
snowflake

Attacker Firewall+IPS+Reverse HTTP Proxy+Load Balancer

Web Servers

FirewallApp ServersFirewall

Database we Control

Custom automatic backdoors

● Use Immunity Debugger to analyze target
.exe/.dll

● Send traffic to it and trace where our triggers
are seen

● Create custom patch to PINKize target .dll and
write this to disk and memory

● Box is now trojaned in a way that does not
require direct connectivity!

Why Immunity Debugger?

● Includes built in analysis engine
● Full Python scripting API can do both dynamic

and static analysis
● Send data to the server and then see what API

it triggers
● Mutate our parasite to look statistically like the

target program
● Trojan in memory or on disk or both

Avoiding
Structural BinDiff

● Change all CALL opcodes to point to our
dispatcher

● Have dispatcher send hooked API's to our code
instead

B C

D

A

E

Disp.

B C D EA

Overall Conclusions

● Botnets and trojans will be extremely difficult to
find and analyze in the near future.

● Nascent market shift to automated incident
response as part of vulnerability analysis faces
ongoing challenges as attackers build one-time
custom-use trojans

