
Politecnico di Milano
Dip. Elettronica e Informazione

Milano, Italy

360° Unsupervised Anomaly-based
Intrusion Detection

Stefano ZaneroStefano Zanero, Ph.D., Ph.D.
Post-doc Researcher, Politecnico di Milano

CTO & Founder, Secure Network S.r.l.

Black Hat Briefings – Washington DC, 01/03/2007

Presentation Outline

Building a case for Anomaly Detection Systems
Bear with me if you already heard this rant :)
Intrusion Detection Systems, not Software !
Why do we need Anomaly Detection ?

Network-based anomaly detection

Solving the curse of dimensionality

Clustering the payloads of IP packets

Host-based anomaly detection
System call sequence analysis (done many times)
System call argument analysis (almost never)
Combining both, along with other ingredients

Detecting 0-day attacks: hope or hype ?
Conclusions

A huge problem, since 331 b.C.

The defender's problem
 The defender needs to plan for everything… the

attacker needs just to hit one weak point
 Being overconfident is fatal: King Darius vs. Alexander

Magnus, at Gaugamela (331 b.C.)

Acting sensibly is the key (“Beyond fear”, by
Bruce Schneier: a must read!)

 “The only difference between systems that can
fail and systems that cannot possibly fail is that,
when the latter actually fail, they fail in a totally
devastating and unforeseen manner that is
usually also impossible to repair” (Murphy's law
on complex systems)

a.k.a. “plan for the worst !!!” (and hope)

Tamper evidence and Intrusion Detection

An information system must be designed
keeping in mind that it will be broken into.
 We must design systems to withstand attacks,

and fail gracefully (failure-tolerance)
 We must design systems to be tamper evident

(detection)
 We must design systems to be capable of recovery

(reaction)

An IDS is a system which is capable of detecting
intrusion attempts on the whole of an
information system

We need intrusion detection, despite what
Gartner's so-called analysts think or say

The question is: which type of IDS components
do we need to answer our requirements ?

The big taxonomy: Anomaly vs. Misuse

 Describes normal
behaviour, and flags
deviations

 Theoretically able to
recognize any attack, also 0-
days

 Strongly dependent on the
model, the metrics and
the thresholds

 Generates statistical alerts:
“Something’s wrong”

 Difficult to use for
automated reaction

 Has an ineliminable number
of false positives

 Evaded by “mimicry”

 Uses a knowledge base to
recognize the attacks

 Can recognize only attacks for
which a “signature” exists

 Problems for polymorphism
(e.g. ADMmutate), as well as
signature expressiveness and
canonicalization issues

 The alerts are precise: they
recognize a specific attack,
giving out many useful
informations

 Can be easily used for
automated reaction

 Usually no false positives, but
“noncontextual alerts” to be
tuned out

 Evaded by “strangeness”

Anomaly Detection Model Misuse Detection Model

Unsupervised learning

 At the Politecnico di Milano Performance Evaluation lab we
are working on anomaly-based intrusion detection
systems capable of unsupervised learning

 What is a learning algorithm ?
It is an algorithm whose performances grow over time
It can extract information from training data

 Supervised algorithms learn on labeled training data
“This is a good event, this is not good”
Think of your favorite bayesian anti-spam filter
It is a form of generalized misuse detection

 Unsupervised algorithms learn on unlabeled data
They can “learn” the normal behavior of a system and detect
variations (remembers something … ?) [outlier detection]
They can group together “similar things” [clustering]

What is clustering ?

Clustering is the grouping of pattern vectors into
sets that maximize the intra-cluster similarity,
while minimizing the inter-cluster similarity

What is a pattern vector (tuple)?
A set of measurements or attributes related to an
event or object of interest:
 E.g. a persons credit parameters, a pixel in a multi-
spectral image, or a TCP/IP packet header fields

What is similarity?
Two points are similar if they are “close”

How is “distance” measured?
Euclidean
Manhattan
Matching Percentage

An example: K-Means clustering

Seeds

Assign Instances to Clusters

Find the new centroids

Recalculate clusters on new centroids

Which Clustering Method to Use?

 There are a number of clustering algorithms, K-means is
just one of the easiest to grasp

 How do we choose the proper clustering algorithm for a
task ?
Do we have a preconceived notion of how many clusters
there should be?

 K-means works well only if we know K
 Other algorithms are more robust

How strict do we want to be?
 Can a sample be in multiple clusters ?
 Hard or soft boundaries between clusters

How well does the algorithm perform and scale up to a
number of dimensions ?

 The last question is important, because data miners work
in an offline environment, but we need speed!
Actually, we need speed in classification, but we can afford a
rather long training

Outlier detection

What is an outlier ?
It’s an observation that deviates so much from other
observations as to arouse suspicions that it was
generated from a different mechanism

 If our observations are packets… attacks
probably are outliers
If they are not, it’s the end of the game for
unsupervised learning in intrusion detection

There is a number of algorithms for outlier
detection

We will see that, indeed, many attacks are
outliers

Multivariate time series learning

A time series is a sequence of observations on a
variable made over some time

A multivariate time series is a sequence of
vectors of observations on multiple variables

 If a packet is a vector, then a packet flow is a
multivariate time series

What is an outlier in a time series ?
Traditional definitions are based on wavelet transforms
but are often not adequate

Clustering time series might also be an approach
We can transform time series into a sequence of
vectors by mapping them on a rolling window

A hard problem, then…

A network packet carries an unstructured
payload of data of varying dimension

Learning algorithms like structured data of fixed
dimension since they are vectorized

A common solution approach was to discard the
packet contents. Unsatisfying because many
attacks are right there.

We used two layers of algorithms, prepending a
clustering algorithm to another learning
algorithm

After much experimentation we found that a
Self Organizing Map (with some speed tweaks)
was the best overall choice

The overall architecture of the IDS

Header Payload
IP TCP

Decoding Clustering

+

S
e
co

n
d

 S
ta

g
e

First stage

Correlation

Port 21

Recognising the protocols...

 Let us look at HTTP (DPORT=80)
Attack packets are in blue, normal packets in

orange
 The characterization makes attacks outliers !

Recognising the attacks

Outlier detection & results

 Using the Smart Sifter outlier detection
algorithm
− Detection Rate well above 70%

− False Positive Rate around 0,03%

 Some thousands of false alerts per day

− An order of magnitude better than other
systems

− Still, too much: we are working on it

 We will release the tool as a GPL Snort
plug-in... I know, I've been promising
for two years, but I'm just never
satisfied...

ROC curve of our NIDS

HIDS: state of the art

 Host-based, anomaly based IDS have a long academic
tradition, and there's a gazillion papers on them

 Let us focus on one observed feature: the sequence of
system calls executed by a process during its life

 Assumption: this sequence can be characterized, and
abnormal deviations of the process execution can be
detected

 Earlier studied focused on the sequence of calls

Used markovian algorithms, wavelets, neural
networks, finite state automata, N-grams, whatever, but
just on the sequence of calls

Markov models comprise other models

 An interesting and different approach was introduced by
Vigna et al. with “SyscallAnomaly/LibAnomaly”, but we'll
see that in due time

Time series learning (again)

If a syscall is an observation, then a program is
a time series of syscalls

If our observations are descriptive of the
behavior of systems… attacks probably are
outliers

Once again, definitions based on wavelet
transforms are not adequate

Markov chains give us an approach to model the
SEQUENCE of system calls

− Has been done a number of times

What is a Markov chain ?

A stochastic process is a finite-state, k-th order
Markov chain if it has:
A finite number of states

The Markovian property (probability of next state
depends only on k most recent states)

Stationary transition probabilities (not variable w/time)

Probabilities, in a first-order chain with s states
can be expressed as a square matrix of order s
In n-th order, with a order sn

They comprise other models
N-grams are simplified n-th order markov chains

FSA are simplified markov chains (almost ;)

Probabilistic grammars are Markov chains (probably)

An example of Markov chain

Training a Markov chain

We can compute the likelihood of a sequence in a
model with a simple conditional probability

We can build the model which fits a given
sequence or set of sequences by calculating the
maximum likelihood model, the one which gives
the various observations the maximum probability

Can be done through simple calculations
(problem of null probabilities), or through
Bayesian ones

Comparison of probability of sequences of
different length is difficult (can use the logarithm
or other tricks to smooth)

Which Markov chain does this fit ?

Simple answer: you compute the likelihood
 If you need to compare multiple models, this is

more complex
You need to take into account the prior probability, or
probability of the model, since:
P(M|O) = P(O|M) P(M) / P(O)

P(O) is fixed and cancels out, but you usually don't
know P(M): depending on the choice, you can have
varying results

S. Zanero, “Behavioral Intrusion Detection”
explains the mathematical trick

SyscallAnomaly: analyzing the variables

SysCall Anomaly, proposed by Vigna et al.
Each syscall separately evaluated on 4 separated models

(maximum) string length

Character distribution

Structural inference

Token search

Each model is theoretically interesting, but
exhibits flaws in real-world situations
Structural inference

Realized as a markov model with no probabilities...

Too sensitive !

Token search
No “search”, really: you must predefine what is a token

Again, no probabilities

Our proposal

We evolved the models
Structural inference: abolished (halving false
positives...)

Implemented a model for filesystem paths (depth –
structural similarities, e.g. elements in common)

Token Search: probabilistic model
UID/GID specialization, considering three categories:

superuser, system id, regular id

Now, we wanted to add
Correlation among the arguments of a single syscall

Hierarchical clustering algorithm to create classes of use

Correlation among system calls over time
Through a proven, reliable Markov chain

Clustering system calls

Clustering is the grouping of pattern vectors
into sets that maximize the intra-cluster
similarity, while minimizing the inter-cluster
similarity

Here “pattern vectors” are the values of various
models

We used a hierarchical agglomerative algorithm
Pick up the two most similar items

Group them

Compute distance from the new group to other groups

Repeat

What is similarity?
Two patterns are similar if they are “close”
We had to define similarity for each model type

e.g. is /usr/local/lib similar to /usr/lib? And to
/usr/local/doc?

Results of clustering

The clustering process aggregates similar uses
of a same system call
E.g.: let us take the open syscalls in fdformat:

/usr/lib/libvolmgt.so.1, -rwxr-xr-x
/usr/lib/libintl.so.1, -rwxr-xr-x
/usr/lib/libc.so.1, -rwxr-xr-x
/usr/lib/libadm.so.1, -rwxr-xr-x
/usr/lib/libw.so.1, -rwxr-xr-x
/usr/lib/libdl.so.1, -rwxr-xr-x
/usr/lib/libelf.so.1, -rwxr-xr-x
/usr/platform/sun4u/lib/libc_psr.so.1, -rwxr-xr-x
/devices/pseudo/mm@0:zero, crw-rw-rw-
/devices/pseudo/vol@0:volctl, crw-rw-rw-
/usr/lib/locale/iso_8859_1/LC_CTYPE/ctype,-r-xr-
xr-x

Each of the clusters is a separate type of syscall
(e.g. “open_1”, “open_2”, “open_3”)

A matter of sequence

We can now build a Markov chain which uses as
states the clusters of syscalls, as opposed to the
syscalls per se

We can train the model easily on normal
program executions
Not static analysis, we would include bugs

At runtime we will have three “outlier
indicators”:

– The likelihood of the sequence so far

– The likelihood of this syscall in this position

– The “similarity” of this syscall arguments to the best-
matching cluster

1) indicates likely deviation of program course

2) and 3) punctual indicators of anomaly

ROC curve of our HIDS

Putting it all together !

What do we have so far ?
A system which flags anomalous packets with an
“outlier factor”

A system which flags anomalous syscalls on a host
with a (set of) outlier factor(s)

How can we correlate these alerts, maybe even
along with others ?

A process of alert stream fusion

1)Aggregation of alerts referring to the same event

2)Correlation of events likely to be related

3)Scenario awareness and high-level analysis

We addressed 1) and 2) until now

Aggregating alerts

Putting together alerts with common features
(attacker, target, service...) and “near” in time

Near = fuzzy concept

More robust. Models uncertainty and errors as well!

False positive reduction

We compare FPR
and DR reduction
while incrementing
aggregation and
suppression of
alerts

Belief correction

preserves from

suppression alerts

with high support

Using “causality” to study correlation

Granger test for causality

If some_data is better explained with some_other_data

in input than it is by itself, then other_data causes data

More formally, if an AR model on the output fits worse

than an ARX model with the input, then the input

“causes” the output

... Nobel prize for Economy.

Some early researchers proposed it for

correlation, and we tried

Results are (IMO) unconclusive, but the approach

seems reasonable

A word of caution about “results”

See my presentation at BH Fed on why the
evaluation of intrusion detection systems is
mostly useless as of now

Additionally, testing “correlation” would need us
to know what we are looking for, but that's
matter for another presentation in the future...

Conclusions & Future Work

Conclusions:
IDS are going to be needed as a complementary

defense paradigm (detection & reaction vs. prevention)
In order to detect unknown attacks, we need better

anomaly detection systems
We can successfully use unsupervised learning for

anomaly detection in an host based environment using
System call sequence

System call arguments

We can successfully aggregate alerts in an
unsupervised fashion. Correlation needs more work!

Future developments:
Correlation :)
Integrating the host based solution to become an IPS,

maybe using CORE FORCE?
Real-world evaluation, perhaps in the framework of a

proposed European FP7 project

?Any question?Any question?

Thank you!Thank you!

I would greatly appreciate your feedback !

Stefano Zanero
zanero@elet.polimi.it

www.elet.polimi.it/upload/zanero/eng

