
360◦ Anomaly Based Unsupervised Intrusion

Detection

Stefano Zanero
Dipartimento di Elettronica e Informazione
Politecnico di Milano Technical University

via Ponzio 34/5 20133 Milano Italy

February 3, 2007

Abstract

This paper is meant as a reference to describe the research conducted
at the Politecnico di Milano university on unsupervised learning for anomaly
detection. We summarize our key results and our ongoing and future work,
referencing our publications as well as the core literature of the field to
give the interested reader a roadmap for exploring our research area.

1 Introduction

Intrusion Detection Systems are often blamed for being ineffective security mea-
sures. However, since networked computer systems are prone to be attacked and
compromised, we need to monitor them for signs of intrusions: the development
of good intrusion detectors is therefore a necessity.

It is well known that two complementary approaches exist in intrusion de-
tection: in misuse detection systems attacks are directly defined by the means
of signatures; in anomaly detection systems instead normality is described and
deviations are consequentially flagged.

Misuse detectors are simpler to design and build, and therefore most of to-
day’s commercial IDS products are substantially misuse-based. Misuse detectors
however are effective only against commonly known attack tools, for which such
a signature can be available. They cannot detect “zero-day” attacks, they suffer
from evasion techniques [1] and polymorphism of attacks [2]. Additionally, they
are useless against insider abuse or other security violations that do not make
use of exploits, such as social engineering attack effects.

An obvious solution would be to switch to an anomaly detection approach,
modeling what is normal instead of what is anomalous. Not needing a database
of “known” attacks, such systems can potentially detect unknown techniques
and insider abuses. A number of host-based anomaly detection systems have
been proposed in academic projects, but they have failed to turn into real world

1

systems (with a few exceptions). This is mainly due to the presence of “false
positives”, or false alerts. While in misuse detectors a proper configuration
and tuning can avoid most “noncontextual” and irrelevant alerts, in anomaly
detectors false positives can be reduced, but not totally eliminated. In second
place, most anomaly detectors have a “normal/alert” outcome which does not
actually tell the user what is wrong, but just alert him/her when the “abnor-
mality” of the situation goes beyond predefined thresholds. This makes them
less user friendly, and ultimately unusable for automated response and intrusion
prevention.

Due to space limitation, we cannot and will not attempt to review all the
previous literature on intrusion detection or to go more in depth than this. We
refer however the curious reader to [3] for a more comprehensive and taxonomical
review.

Our research work focuses on the analysis and development of anomaly based
intrusion detection systems based on unsupervised learning algorithms. In this
paper, we will briefly summarize the main results of our research, leading to the
development of a complete, integrated suite of tools for anomaly based intru-
sion detection at both host and network levels. Our key original contributions
have been published in international conferences [4–7], submitted to scientific
journals, and have been the core of a doctoral thesis [8]. We refer the reader to
such publications for further information on our research work

2 Network Intrusion Detection

Network Intrusion Detection is a particularly challenging field for the applica-
tion of unsupervised learning algorithms. In particular, the varying size of the
payloads of the datagrams, and their heterogeneous nature which defies a com-
pact representation as a single feature, are the hardest problems to solve. Most
existing researches on this topic avoid this problem altogether by discarding the
payload and retaining only the information in the packet header, or by tracking
connection-wide variables instead of analyzing single packets [9–13].

In previous works [5–8] we proposed a novel network based anomaly de-
tection system which uses a two-tier architecture to overcome dimensionality
problems and apply unsupervised learning techniques to the payload of packets,
as well as to the headers. The overall architecture is shown in Fig. 1. In the first
tier of the system, a Self Organizing Map (SOM) [14] operates a basic form of
pattern recognition on the payload of the packets, observing one packet payload
at a time and “compressing” it into a byte of information (a “payload class”
value) [5, 7]. We considered performance issues and proposed improvements
and heuristics to increase the throughput of SOMs by almost three times, with
marginal misclassification rates, to reach a speed which is suitable for online
Intrusion Detection purposes [6].

This classification is then added to a subset of the information decoded
from the packet header and passed on to the second tier algorithm, which is an
unsupervised algorithm for outlier detection in multivariate time series based

2

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/...

PAYLOAD
(upper layer protocol data)

Ethernet: 0–1460 bytes

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/...

PAYLOAD
(upper layer protocol data)

Ethernet: 0–1460 bytes

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/...

PAYLOAD
(upper layer protocol data)

Ethernet: 0–1460 bytes

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

FI
RS

T
ST

AG
E

Un
su

pe
rv

ise
d

le
ar

ni
ng

 c
la

ss
ifie

r

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

De
co

de
d

He
ad

er
 D

at
a

(IP
, p

or
ts

, fl
ag

s)

Pa
yl

oa
d

Cl
as

si
fic

at
io

n
(fr

om
 fi

rs
t s

ta
ge

)

SECOND STAGE
Time correlation and outlier detection

Tim
e

Time

Figure 1: The overall architecture of the two-stage network-based IDS proto-
type.

on discounting learning (Smart Sifter [15]). The output of SmartSifter is a value
expressing the statistical distance of the new observation from the former ones.
In order to automatically tune the threshold beyond which a data vector is
considered an outlier, we modified SmartSifter by introducing a training phase
during which the distribution of the anomaly scores is approximated, and an
estimated quantile of the distribution is also computed. In this way we can
directly set the IDS sensitivity as the percentage of packets we want to consider
as outliers [8] .

We ran the prototype over various days of the 1999 DARPA dataset. The
average results are reported in Table 1. The first column contains the sensitivity
threshold of the algorithm, that is, the target percentage of packets to be clas-
sified as outliers. It is also a good predictor of the False Positive Rate (FPR),
if the attack rate is not too high. For a comparison, the authors of SmartSifter
claim a 18% detection rate, with a 0.9% false positive rate. Our algorithm can
instead reach a 92% detection rate with a 0.17% false positive rate, thus demon-
strating a highly superior performance. PAYL [16] is the only other prototype
we are aware of, which uses part of the payload of packets. The best overall
results for PAYL show a detection rate of 58.7%, with a false positive rate that
is between 0.1% and 1%. Our architecture can reach the same detection rate
with a false positive rate below 0.03%, thus an order of magnitude better than

3

Threshold Detection Rate False Positive Rate
0.03% 66.7% 0.031%
0.05% 72.2% 0.055%
0.08% 77.8% 0.086%
0.09% 88.9% 0.095%

Table 1: Detection rates and false positive rates for our prototype

PAYL, or on the other hand it can reach a 88.9% detection rate with no more
than a 1% rate of false positives.

3 System Call Anomaly Detector

Host based anomaly detection has been widely studied in literature. The sem-
inal work of Denning [17], followed by others [18, 19], used purely statistical
approaches, sometimes with good results. Most of these works, however, do not
take into account sequential events, just system-wide variables (and they are
also the works that come up to mind to most people when “anomaly detection”
is named). Other studies focus on the analysis of user sessions to find masquer-
aders [4,20–22]. Nowadays however interactive console access to systems is less
and less used.

The first mention of intrusion detection through the analysis of the sequence
of syscalls from system processes is in [23], where “normal sequences” of system
calls are considered (without paying any attention to the parameters of each
invocation). Variants of [23] have been proposed in [24–28]. An inductive rule
generator called RIPPER [29,30] has been also proposed for analyzing sequences
of syscalls and extracting rules [31] that can then be enforced for intrusion
prevention purposes [32,33].

The use of Markov chains as a simple, short range correlation model was also
proposed, e.g in [34–36]. In [4] we proposed a bayesian framework for behavior
detection using Markov models.

Alternatively, other authors proposed to use static analysis, as opposed to
dynamic learning, to profile a program normal behavior [37,38].

Curiously enough, none of these methods analyzes either the arguments of
the system calls. This is due to the inherent complexity of the task, in a similar
way to what we saw before for Network IDS and packet payloads. Two recent
research works began to focus on this problem. In [39] a number of models are in-
troduced to deal with the most common arguments. This is the work we discuss
in depth and extend in our paper. In [40] an alternative framework is proposed,
using the LERAD algorithm (Learning Rules for Anomaly Detection) which
mines rules expressing “normal” combinations of arguments. Strangely, neither
work uses the concept of sequence analysis. A concept named “Resilience” has
also recently been introduced [41], involving the mapping of arguments of sys-
tem calls as multidimensional data points. However, this approach is still in the

4

exitSy
sc

al
l s

eq
ue

nc
e

[P
ID

, A
pp

]

Ca
ll m

od
el

s
ch

oi
ce

 a
nd

 a
gg

re
ga

tio
nSyscallArgs [arg1, arg2, ..., argN]execve

model1 model2 ... modelN

Cl
us

te
rin

g
of

 s
ys

ca
lls

Tim
e (clustering phase)

Per-application Markov models learning and storage

SyscallArgs [arg1, arg2, ..., argN]SyscallName
model1 model2 ... modelN

SyscallArgs [arg1, arg2, ..., argN]SyscallName
model1 model2 ... modelN

.

Se
qu

en
ce

of

 c
lu

st
er

s
[A

pp
]

Time (detection phase)

On-line Markov model construction, behavior evaluation, and alert firing

Comparing syscalls with known syscalls clusters

. . .

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Sy
sc

al
l

Se
qu

en
ce

of

 c
lu

st
er

s
[A

pp
]

Se
qu

en
ce

of

 c
lu

st
er

s
[A

pp
]

Se
qu

en
ce

of

 c
lu

st
er

s
[A

pp
]

Se
qu

en
ce

of

 c
lu

st
er

s
[A

pp
]

Se
qu

en
ce

of

 c
lu

st
er

s
[A

pp
]

Se
qu

en
ce

of

 c
lu

st
er

s
[A

pp
]

Se
qu

en
ce

of

 c
lu

st
er

s
[A

pp
]

. . .

st
or

ed
 c

lu
st

er
s

stored clusters = model states

Figure 2: The overall architecture of the host-based IDS prototype.

early stages of development.
In [8] we described a tool that can detect anomalies by analyzing system call

arguments and sequences. The system is an almost complete re-engineering of
SyscallAnomaly [39]. In particular, our prototype implements some of the ideas
of SyscallAnomaly along with Markovian based modeling, clustering and behav-
ior identification outperforming the original application with both an increased
DR and a reduced FPR.

The overall architecture is drawn in Fig. 2: a hierarchical clustering al-
gorithm is used to identify groups of similar syscalls (for details see [8]); the
resulting clusters become the nodes of a Markov chain built to characterize
the behavior of each application on the system in terms of syscall sequences.
Anomaly thresholds are also learned directly from the training data.

During the detection phase, each system call is associated to a cluster, and
the likelihood of its arguments is calculated against the models of that clus-
ter. The probability of the last transition and the cumulative probability of
the sequence are calculated using the Markov model, implementing a correc-
tion algorithm in order to avoid the assignment of low probabilities. Model
probabilities are calculated on-line, and compared to stored thresholds.

Calls whose arguments are anomalous, or whose presence is anomalous in
that position; and sequences that are overall unlikely are flagged with alerts.

5

D
eg

re
e

o
f m

em
b

er
sh

ip

Time (s)

Alert

Crisp window

D
eg

re
e

o
f m

em
b

er
sh

ip

Time (s)

Alert

Fuzzy window

Closeness

(a) (b)

Figure 3: Comparison of crisp (a) and fuzzy (b) time-windows

4 Correlation and aggregation approaches

We propose also (in a work still under review for publication, and which cannot
therefore be explained thoroughly here) a process of alert fusion suitable for our
anomaly detectors.

Alert fusion is the correlation of aggregated streams of alerts. The aggre-
gation of two alerts, reported by the same IDS, is the grouping of alerts that
have similar features and are close in time. On the other hand, alert correlation
means recognizing logically linked alerts. The desired output of an alert fusion
process is a compact, high-level view of what is happening into the network as
a whole. In the security field, such a process is also known as security informa-
tion monitoring. We refer the reader to the model in [42] for a more detailed
taxonomy.

Time-distance aggregation might be able to catch simple scenarios like re-
mote attacks against remote applications (e.g., web servers) vulnerabilities.
This kind of anomalies have evidence in both network and host activities. This
also helps to reduce the number of redundant alerts, since many IDS report
the same attack raising more than one alert, depending on the specific analyzer
implementation. We propose to use fuzzy measures [43] and fuzzy sets [44]
to design more robust aggregation algorithms. The use of fuzzy sets allows
us to precisely define a time-distance criterion, which in addition can handle
unavoidable errors such as delayed detections.

As can be seen in Fig. 3, using fuzzy sets delayed detections can be modeled
using a triangle-shaped set instead of a singleton. We can also use a trape-
zoidal fuzzy set instead of a crisp window, resulting in a more robust distance
measurement and time window definition. In the example, simple triangles
and trapezoids have been used: however, more accurate/complex membership
functions could be used as well.

If we have two alert streams (network and host alerts) in input, the output
should be one stream of uncorrelatable alerts (i.e., already aggregated alerts
plus the ones that are not correlated). In a first version of the post-processing

6

procedure, we chose to classify uncorrelated alerts (network alerts without host
verification and vice-versa) as false-positives and discard them. Experimentally
it can be shown that this approach is too pessimistic and could lead to discarding
true positive. We used the deviation of the anomaly value from the threshold as
an indication of “belief” that an attack took place, and the false positive rate
as a measure of systematic “disbelief” [43,44] of the detector. Using them in an
appropriate scaling function, we can keep alerts that, albeit uncorrelated, have
a strong belief supporting them.

Since alert correlation is a relatively new problem, evaluation techniques
are limited to a few approaches [45]. Thus the development of solid testing
methodologies is needed from both the theoretical and the practical points of
view. To evaluate our approach, we used the following metrics: since the main
goal is to reduce the amount of alerts without discarding true positives, the
DR should ideally not decrease while the FPR should be reduced as much as
possible. From our experiments, the fuzzy approach with the belief/misbelief
correction shows the best performances.

The correlation phase is even more challenging, because it commonly
needs a priori knowledge which we do not have; for instance, precise information
about attacks names, division of attacks into classes, and alert priorities. Most
previous approaches use formalizations and/or signatures [46,47].

Statistical techniques have been also proposed. The current version of EMER-
ALD [48] implements a so-called probabilistic alert correlation engine. De-
scribed in details in [49], the approach relies on the definition of some similarity
metrics between alerts; the correlation phase calculates a weighted similarity
value and finds “near” alerts to be fused together. The features used include
the source IDS identifiers, timestamps, the alert thread, source and destination
addresses and ports. Association rule mining techniques have been used [50–52]
in order to learn recurrent alert sequences for unsupervised alert scenario iden-
tification.

Classic time-series modeling and analysis have been also applied. The ap-
proach detailed in [53] constructs alert time-series counting the number of events
occurring into fixed-size sampling intervals; authors then exploits trend and pe-
riodicity removal techniques in order to filter out predictable components and
leave real alerts only as the output. The main shortcoming of this approach is
the need for long alert streams in order to be effective.

Other authors proposed [54] to implement a Granger statistical causality
test. Without going into details, the test is based on a causality statistic which
quantifies how much of the history of a given set of alerts is needed to explain
the evolution of another set of alerts. Repeating the procedure for each couple
of set allows to identify “causally related” events and to reconstruct scenarios
in an unsupervised fashion. However, our experiments showed how the Granger
causality test is heavily dependent on the tuning of configuration parameters,
making it quite unreliable. We are working on improved tests for detecting
correlation in an unsupervised manner among sets of alerts.

7

5 Conclusions and future works

In this paper we summarized the core results of the research conducted at the
Politecnico di Milano university on unsupervised learning for anomaly detection.
We also described part of our ongoing and future work, referencing our own
publications as well as the reference literature of the field.

We described a network intrusion detection system totally based on unsu-
pervised learning, which uses unsupervised payload clustering and classification
techniques that enables an effective outlier detection algorithm to flag anoma-
lies. We also described a host anomaly detector, that exploits the analysis of
both system calls arguments and behavior,

Finally we showed how we are working to integrate both prototypes to create
a fully unsupervised, integrated intrusion detection environment. We analyzed
previous literature about alert fusion (i.e., aggregation and correlation), and
found that effective techniques have been proposed, but they are not really
suitable for anomaly detection, because they require a priori knowledge (e.g.,
attack names or division into classes) to perform well. To overcome this we
successfully exploited fuzzy sets and measures to aggregate alerts reported by
the two IDS. Our experiments showed that the proposed fuzzy aggregation ap-
proach is able to decrease the FPR at the price of a small reduction of the DR
(a necessary conseguence).

We also showed preliminary results on the use of the Granger causality test
to recognize logically linked alerts, also giving a statistical quantification of the
degree of “causality”. Even if the method does not require a priori knowledge,
we identified a significant issue in the fact that the statistical test relies on
non-obvious configuration parameters which values significantly affect the final
result.

Future extensions of this work will investigate better algorithms for corre-
lation of anomaly based alerts. We are also trying to allow a human expert to
refine the training of the system, with a “semi-supervised” approach. Addition-
ally, we need to enhance the amount of information a human operator can get
from the system, and to make it more user friendly and actionable. Another
possible extension of this work is the investigation of algorithms and criteria to
correlate anomaly and misuse-based alerts together, in order to bridge the gap
between the existing paradigms of intrusion detection.

Finally, we noted throughout our works that the evaluation of an intrusion
detection system is a difficult and open research topic [55]. It is very difficult
to plan tests for the different performance metrics of an IDS system (such as
throughput, detection capabilities, etc.), and it is even more difficult to combine
these tests in a meaningful, overall evaluation. The only available dataset for
IDS evaluation, the so-called “DARPA IDS Evaluation dataset”, has a number
of known shortcomings in the network data samples [56,57]. In [8] we also make
it evident that the host based traces suffer from similar issues. Furthermore,
the dataset is outdated and the attack scenarios are too simple. Therefore
we think it is high time to study and create a more sound methodology for
evaluating and testing intrusion detection systems. We are designing a toolset

8

for generating synthetic traffic and superimposing attacks, and we will try to
develop a methodology for evaluation which is both scientifically repeatable and
sound with respect to real world usage requirements.

Personal and Formal Acknowledgments

Prof. Sergio Savaresi, Dr. Matteo Matteuci and Federico Maggi worked with me
on most of this research, and I need to thank them gratefully. Most of this work
was supported by the Italian Ministry of Education and Research under the
FIRB Project “Performance evaluation for complex systems”, in the research
unit led by my advisor, prof. Giuseppe Serazzi, whose continual support I
gratefully acknowledge. A huge number of people contributed a comment, an
idea, or worked on the systems during the years: without making a very long
list, I need to thank each one of you. You know who you are.

References

[1] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and
denial of service: Eluding network intrusion detection. Technical Report
T2R-0Y6, Secure Networks, Calgary, Canada, 1998.

[2] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-based In-
trusion Detection Signatures Using Mutant Exploits. In Proceedings of the
ACM Conference on Computer and Communication Security (ACM CCS),
pages 21–30, Washington, DC, October 2004.

[3] Rebecca Gurley Bace. Intrusion detection. Macmillan Publishing Co., Inc.,
Indianapolis, IN, USA, 2000.

[4] Stefano Zanero. Behavioral intrusion detection. In Cevdet Aykanat, Tugrul
Dayar, and Ibrahim Korpeoglu, editors, Proceedings of ISCIS 2004, volume
3280 of Lecture Notes in Computer Science, pages 657–666, Kemer-Antalya,
Turkey, October 2004. Springer.

[5] Stefano Zanero. Analyzing tcp traffic patterns using self organizing maps.
In Fabio Roli and Sergio Vitulano, editors, 13th International Conference
on Image Analysis and Processing - ICIAP 2005, volume 3617 of Lecture
Notes in Computer Science, pages 83–90, Cagliari, Italy, September 2005.
Springer.

[6] S. Zanero. Improving self organizing map performance for network intrusion
detection. In SDM 2005 Workshop on “Clustering High Dimensional Data
and its Applications”, 2005.

[7] Stefano Zanero and Sergio M. Savaresi. Unsupervised learning techniques
for an intrusion detection system. In Proc. of the 2004 ACM Symposium
on Applied Computing, pages 412–419. ACM Press, 2004.

9

[8] Stefano Zanero. Unsupervised Learning Algorithms for Intrusion Detection.
PhD thesis, Politecnico di Milano T.U., Milano, Italy, May 2006.

[9] M.V. Mahoney and P.K. Chan. Detecting novel attacks by identifying
anomalous network packet headers. Technical Report CS-2001-2, Florida
Institute of Technology, 2001.

[10] Calvin Chow. Parzen-Window network intrusion detectors. In ICPR ’02:
Proceedings of the 16 th International Conference on Pattern Recognition
(ICPR’02) Volume 4, pages 385–388, Washington, DC, USA, aug 2002.
IEEE Computer Society.

[11] K. Labib and R. Vemuri. NSOM: A real-time network-based intrusion
detection system using self-organizing maps. Technical report, Dept. of
Applied Science, University of California, Davis, 2002.

[12] M. V. Mahoney and P. K. Chan. A machine learning approach to detecting
attacks by identifying anomalies in network traffic. Technical Report CS-
2002-08, Florida Institute of Technology, 2002.

[13] M. V. Mahoney. Network traffic anomaly detection based on packet bytes.
In Proceedings of the 19th Annual ACM Symposium on Applied Computing,
2003.

[14] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 3 edition,
2001.

[15] K. Yamanishi, J.-I. Takeuchi, G. J. Williams, and P. Milne. Online unsu-
pervised outlier detection using finite mixtures with discounting learning
algorithms. Knowledge Discovery and Data Mining, 8(3):275–300, 2004.

[16] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network in-
trusion detection. In RAID Symposium, September 2004.

[17] D. E. Denning. An intrusion-detection model. IEEE Transactions on Soft-
ware Engineering, SE-13(2):222–232, February 1987.

[18] Mark Burgess, Hârek Haugerud, Sigmund Straumsnes, and Trond Reitan.
Measuring system normality. ACM Trans. Comput. Syst., 20(2):125–160,
2002.

[19] N. Ye and Q. Chen. An anomaly detection technique based on a chi-square
statistic for detecting intrusions into information systems. Quality and
Reliability Engineering International, 17(2):105–112, 2001.

[20] Jake Ryan, Meng-Jang Lin, and Risto Miikkulainen. Intrusion detection
with neural networks. In Michael I. Jordan, Michael J. Kearns, and Sara A.
Solla, editors, Advances in Neural Information Processing Systems, vol-
ume 10. The MIT Press, 1998.

10

[21] H. Debar, M. Becker, and D. Siboni. A neural network component for
an intrusion detection system. In Proc. IEEE Symposium on Research in
Computer Security and Privacy, 1992.

[22] M. Theus and M. Schonlau. Intrusion detection based on structural zeroes.
Statistical Computing & Graphics Newsletter, 9:12–17, 1998.

[23] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A sense of self for Unix processes. In Proceedings of the 1996
IEEE Symposium on Security and Privacy, Washington, DC, USA, 1996.
IEEE Computer Society.

[24] Stephanie Forrest, Alan S. Perelson, Lawrence Allen, and Rajesh
Cherukuri. Self-nonself discrimination in a computer. In SP ’94: Pro-
ceedings of the 1994 IEEE Symposium on Security and Privacy, page 202,
Washington, DC, USA, 1994. IEEE Computer Society.

[25] J. B. D. Cabrera, L. Lewis, and R.K. Mehara. Detection and classification
of intrusion and faults using sequences of system calls. ACM SIGMOD
Record, 30(4), 2001.

[26] G. Casas-Garriga, P. Dı́az, and J.L. Balcázar. ISSA: An integrated sys-
tem for sequence analysis. Technical Report DELIS-TR-0103, Universitat
Paderborn, 2005.

[27] Intrusion Detection Using Sequences of System Calls. S. hofmeyr and s.
forrest and a. somayaji. Journal of Computer Security, 6:151–180, 1998.

[28] Anil Somayaji and Stephanie Forrest. Automated response using system–
call delays. In Proceedings of the 9th USENIX Security Symposium, Denver,
CO, August 2000.

[29] William W. Cohen. Fast effective rule induction. In Armand Prieditis
and Stuart Russell, editors, Proc. of the 12th International Conference on
Machine Learning, pages 115–123, Tahoe City, CA, Jul 1995. Morgan Kauf-
mann.

[30] Y. Chevaleyre, N. Bredeche, and J. Zucker. Learning rules from multiple in-
stance data : Issues and algorithms. In Proceedings of the 9th International
Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU02), Annecy, France, 2002.

[31] Wei Fan, Matthew Miller, Salvatore J. Stolfo, Wenke Lee, and Philip K.
Chan. Using artificial anomalies to detect unknown and known network
intrusions. In ICDM, pages 123–130, 2001.

[32] N. Provos. Improving host security with system call policies. Technical
Report 02-3, CITI, November 2002.

11

[33] Suresh N. Chari and Pau-Chen Cheng. Bluebox: A policy-driven, host-
based intrusion detection system. ACM Trans. Inf. Syst. Secur., 6(2):173–
200, 2003.

[34] Andrew P. Kosoresow and Steven A. Hofmeyr. Intrusion detection via
system call traces. IEEE Softw., 14(5):35–42, 1997.

[35] Christina Warrender, Stephanie Forrest, and Barak A. Pearlmutter. De-
tecting intrusions using system calls: Alternative data models. pages 133–
145, 1999.

[36] S. Jha, K. Tan, and R. A. Maxion. Markov chains, classifiers, and intru-
sion detection. In CSFW ’01: Proceedings of the 14th IEEE Workshop on
Computer Security Foundations, page 206, Washington, DC, USA, 2001.
IEEE Computer Society.

[37] David Wagner and Drew Dean. Intrusion detection via static analysis. In
SP ’01: Proceedings of the 2001 IEEE Symposium on Security and Privacy,
page 156, Washington, DC, USA, 2001. IEEE Computer Society.

[38] Jonathon T. Giffin, David Dagon, Somesh Jha, Wenke Lee, and Barton P.
Miller. Environment-sensitive intrusion detection. In RAID, pages 185–206,
2005.

[39] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the Detection of Anoma-
lous System Call Arguments. In Proceedings of the 2003 European Sympo-
sium on Research in Computer Security, Gjøvik, Norway, October 2003.

[40] G. Tandon and P. Chan. Learning rules from system call arguments and
sequences for anomaly detection. In ICDM Workshop on Data Mining for
Computer Security (DMSEC), pages 20–29, 2003.

[41] Dave Aitel. Resilience. http://www.immunitysec.com/
resources-papers.shtml, February 2006.

[42] Fredrik Valeur. A comprehensive approach to intrusion detection alert cor-
relation. IEEE Trans. Dependable Secur. Comput., 1(3):146–169, 2004.
Member-Giovanni Vigna and Member-Christopher Kruegel and Fellow-
Richard A. Kemmerer.

[43] Zhenyuan Wang and George J. Klir. Fuzzy Measure Theory. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1993.

[44] George J. Klir and Tina A. Folger. Fuzzy sets, uncertainty, and informa-
tion. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[45] Joshua Haines, Dorene Kewley Ryder, Laura Tinnel, and Stephen Taylor.
Validation of sensor alert correlators. IEEE Security and Privacy, 01(1):46–
56, 2003.

12

[46] S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An attack language for
state-based intrusion detection. In Proceedings of the ACM Workshop on
Intrusion Detection, Atene, November 2000.

[47] Steven J. Templeton and Karl Levitt. A requires/provides model for com-
puter attacks. In NSPW ’00: Proceedings of the 2000 workshop on New
security paradigms, pages 31–38, New York, NY, USA, 2000. ACM Press.

[48] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling
responses to anomalous live disturbances. In Proc. 20th NIST-NCSC Nat’l
Information Systems Security Conf., pages 353–365, 1997.

[49] Alfonso Valdes and Keith Skinner. Probabilistic alert correlation. In RAID
’00: Proceedings of the 4th International Symposium on Recent Advances
in Intrusion Detection, pages 54–68, London, UK, 2001. Springer-Verlag.

[50] Klaus Julisch and Marc Dacier. Mining intrusion detection alarms for ac-
tionable knowledge. In KDD ’02: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
366–375, New York, NY, USA, 2002. ACM Press.

[51] O. Dain and R. Cunningham. Fusing heterogeneous alert streams into
scenarios. In Proc. of the ACM Workshop on Data Mining for Security
Applications, pages 1–13, November 2001.

[52] Hervé Debar and Andreas Wespi. Aggregation and correlation of intrusion-
detection alerts. In RAID ’00: Proceedings of the 4th International Sym-
posium on Recent Advances in Intrusion Detection, pages 85–103, London,
UK, 2001. Springer-Verlag.

[53] Jouni Viinikka, Hervé Debar, Ludovic Mé;, and Renaud Séguier. Time
series modeling for ids alert management. In ASIACCS ’06: Proceedings of
the 2006 ACM Symposium on Information, computer and communications
security, pages 102–113, New York, NY, USA, 2006. ACM Press.

[54] Xinzhou Qin and Wenke Lee. Statistical causality analysis of infosec alert
data. In RAID, pages 73–93, 2003.

[55] Stefano Zanero. My ids is better than yours... or is it ? In Blackhat Federal
2006 Briefings, 2006.

[56] John McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by lincoln laboratory. ACM Trans. on Information and System Security,
3(4):262–294, 2000.

[57] M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARPA / Lincoln
laboratory evaluation data for network anomaly detection. In Proceedings
of the 6th International Symposium on Recent Advances in Intrusion De-
tection (RAID 2003), pages 220–237, Pittsburgh, PA, USA, September
2003.

13

