
ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 1

Abstract: Address Space Layout Randomization (ASLR) is a

prophylactic security technology aimed at reducing the

effectiveness of exploit attempts. With the advent of Microsoft

Windows Vista, ASLR has been integrated into the default

configuration of a Microsoft Windows operating system for the

first time. We measure the behavior of the ASLR

implementation in the Vista RTM release. Our analysis of the

results uncovers predictability in the implementation that

reduces its effectiveness.

Index Terms: Address Space Layout Randomization, ASLR,

Security, Microsoft, Windows, Vista, Visual Studio,

/Dynamicbase

I. INTRODUCTION

Address space layout randomization, or ASLR, is a

prophylactic security technology that increases system

security by increasing the diversity of attack targets [20].

Rather than increasing security by removing vulnerabilities

from the system, ASLR makes it more difficult to exploit

existing vulnerabilities. This technology is complementary

to efforts to remove security vulnerabilities since it can offer

some protection for vulnerabilities that are not yet known or

have not yet been remedied. ASLR is also complementary

to other prophylactic techniques such as Data Execution

Prevention (DEP) since the combination of both

technologies provides a much stronger defense against

memory manipulation vulnerabilities than either one alone.

Techniques for exploiting memory manipulation

vulnerabilities are sensitive to the memory layout of the

program being targeted. This important class of

vulnerability includes stack and heap overflows,

underflows, format string vulnerabilities, array index

overflows and uninitialized variables. By randomizing the

memory layout of an executing program, ASLR decreases

the predictability of the memory layout and reduces the

probability that an individual exploit attempt will succeed.

The security offered by ASLR is based on several factors

[12], including how predictable the random memory layout

of a program is, how tolerant an exploit technique is to

variations in memory layout, and how many exploitation

attempts an attacker can practically make.

Address space layout randomization has been integrated

into and available for several popular operating systems

such as OpenBSD and Linux for several years. Third-party

ASLR implementations have been available for previous

versions of the Microsoft Windows operating systems as

stand-alone products or as part of a Host intrusion

protection (HIPS) solutions [1][2][4][11][18]. With the

advent of Microsoft Windows Vista, ASLR has been

integrated into the default configuration of a Microsoft

Windows operating system for the first time [5].

We measured the behavior of the address space layout

randomization feature in the 32-bit Vista RTM release.

This paper presents our measurements and discusses our

measurement techniques. Our analysis uncovers some flaws

that reduce the effectiveness of Vista’s ASLR

implementation.

A. Previous Work

There have been several efforts to describe and measure

the ASLR implementation in Vista. The first is described in

the tuxedo-es.org blog [13] and supported by the release of

their VistaProbe tool [14][15][16][17]. This was followed

shortly by a paper by Rahbar [10] but it’s analysis was

refuted by Howard [6]. Both efforts used a beta release of

Vista to make their measurements since a release version

was not yet available.

To our knowledge our work is the first to measure the

ASLR implementation in the Vista RTM release. Unlike

previous work, we rebooted the test system between

measurements to measure ASLR in the environment it was

intended to be used in. While previous work relied on a

small number of measurements to draw conclusions, we

took a much larger number of measurements and expect our

results to have more statistical significance. Finally, we

report several important and unexpected deficiencies in the

ASLR implementation that were not previously reported

and have since been acknowledged by Microsoft.

B. Outline

The remainder of this paper is organized as follows:

Section II describes the ASLR implementation provided by

An Analysis of Address Space Layout

Randomization on Windows Vista

Ollie Whitehouse, Architect, Symantec Advanced Threat Research

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 2

Vista and describes our methodology for measuring its

behavior. Section III presents and analyzes the

measurements we made. Section IV presents our

conclusions based on the analysis.

II. ASLR IN VISTA

Windows Vista provides address space layout

randomization on a per-image basis. Any executable image

which contains a PE header, such as executable binaries

(.exe) and dynamic link libraries (.dll), can elect to

participate in address space layout randomization. This

election is made by setting a bit (0x40) in one of the PE

header fields (DLLCHARACTERISTICS) [7]. An option

(/dynamicbase) is provided by the Microsoft Visual Studio

2005 linker for setting this bit when linking an image.

While loading an image that has elected to participate in

ASLR the system uses a random global image offset. This

offset is selected once per reboot, although we’ve

uncovered at least one other way to cause this offset to be

reset without a reboot (see Appendix II). The image offset

is selected from a range of 256 values and is 64kB aligned.

This offset and the other random parameters are generated

pseudo-randomly [3]. All images loaded together into a

process, including the main executable and DLLs, are

loaded one after another at this offset. Because image

offsets are constant across all processes a DLL that is

shared between processes can be loaded at the same address

in all processes for efficiency.

When executing a program whose image has been marked

for ASLR the memory layout of the process is further

randomized by randomly placing the thread stack and the

process heaps. The stack address is selected first. The

stack region is selected from a range of 32 possible

locations, each separated by 64kB or 256kB (depending on

the STACK_SIZE setting). Once the stack has been placed,

it the initial stack pointer is further randomized by

decrementing it a random amount. The initial offset is

selected to be up to half a page (2048 bytes) but is limited

to naturally aligned addresses (four byte alignment on IA32

and 16 byte alignment on IA64). The choices result in an

initial stack pointer chosen from one of 16384 possible

values on an IA32 system.

After the stack address has been selected, the process

heaps are selected. Each heap is allocated from a range of

32 different locations, each separated by 64kB. The

location of the first heap must be chosen to avoid the

previously placed stack, and each of the following heaps

must be allocated to avoid those allocated before it.

The address of an operating system structure known as the

Process Environment Block (PEB) is also selected

randomly. The PEB randomization feature was introduced

earlier in Windows XP SP2 and Windows 2003 SP1 and is

also present in Windows Vista. Although implemented

separately it is also a form of address space randomization

but unlike the other ASLR features, PEB randomization

occurs whether or not the executable being loaded elected

to use the ASLR feature.

An important result of Vista’s ASLR design is that some

address space layout parameters such as PEB, stack and

heap locations are selected once per program execution.

Other parameters, such as the location of the program code,

data segment, BSS segment and libraries, change only

between reboots.

A. Methodology

We measured Vista’s ASLR implementation to verify its

behavior and to determine how random the memory layout

of loaded programs is. We constructed a program to log

several important addresses associated with the program

each time it is executed. To measure the randomization of

the image base address the test program prints the address

of a function in the code segment. To measure the

randomization of the stack, it prints the address of an

automatic variable. To measure the randomization of the

PEB structure it prints the address of the PEB. Finally it

measures the placement of three heaps. It measures the

CRT heap by printing the first value returned by malloc. It

prints the first values returned by HeapAlloc using the

default process heap, and using a heap created with

HeapCreate.

We compiled our test program with Microsoft Visual

Studio 2005 SP1 Beta and linked it statically. The program

source is listed in Appendix I. When executed repeatedly

with the same environment on a machine that does not

support ASLR or PEB randomization, this program reports

the same constants each time. Any variation in the output is

due solely to the effects of ASLR.

Some ASLR parameters are only set once per system

boot
1
. To properly measure the effects of ASLR we

decided to reboot the system between measurements. We

configured an AMD Ahtlon 3200 system running 32-bit

Windows Vista RTM to automatically log in and run our

data collection utility during system startup and then to

reboot. This setup closely mimics the environment of long

running servers which are executed once during system

startup. Our test harness was used to collect samples from

11,500 test runs over the course of twelve days. The

complete data is being made available [19].

III. ANALYSIS

We analyzed the results of our measurements to quantify

the amount of randomness introduced into the memory

layout of a process by the ASLR implementation. Figure 1

show the collected data for HeapAlloc addresses plotted as

a series of samples. The plot reveals no noticeable patterns,

indicating some amount of randomness. Plots for the other

measured addresses were similar and are not included here.

1 Normally; as noted previously.

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 3

Figure 1 – 11,500 HeapAlloc samples.

To compare the implementation design with our

measurements we analyzed the data to determine how many

different value each parameter can have. Table 1 shows a

count of unique values found in the 11,500 samples taken

for each measurement and compares this count to the

expected range dictated by the design.

The observed range of stack addresses differs from what

is expected but it is clear that our 11,500 samples are not

large enough to properly measure the full range and no

conclusions can be drawn.

Item Expected Observed Difference

Stack 16384 (2
14
) 8,568 -48%

Malloc2 >= 32 (>= 2
5
) 192 +500%

HeapAlloc
3
 >= 32 (>= 2

5
)

95 +200%

CreateHeap
4
 >= 32 (>= 2

5
) 209 +550%

Image 256 (2
8
) 255 -0.4%

PEB 16 (2
4
) 13 -19%

Table 1 – Comparison between the number of unique

values observed and expected in each data set.

The observed range of heap addresses differs considerably

from each other and from their expected values. All three

heap allocations show more variability than expected. This

may indicate that our description of heap address selection

is incomplete or incorrect. Another possible explanation is

that heap use during program startup is non-deterministic

and adds to the randomness of our samples. One surprising

result is that the observed range of HeapAlloc locations is

much smaller than the range of addresses allocated using

malloc! In 11,500 runs we observed 95 unique addresses

were returned by HeapAlloc() while 192 unique

addresses were returned by malloc(). The difference in

usage reveals that applications that utilize the Microsoft

HeapAlloc() function are at greater risk than those that

utilize the ANSI C malloc() API. This could be due to

2 Heap allocation using the malloc function.
3 Heap allocation using the HeapAlloc function and the default process

heap.
4 Heap allocation using HeapAlloc and a heap created with the

CreateHeap function.

the order in which heaps are allocated. A heap that is

created later will have to be placed at an address not

occupied by previously allocated heaps, reducing the

amount of randomness in its placement.

A. Occurrences of duplicates

The range of a random variable does not tell the whole

story. The protection offered by ASLR depends on the

entropy of the parameters, that is, how unpredictable they

are. The entropy of a parameter with a given range is

highest (most unpredictable) when all values are equally

likely.

We observed a significant number of instances where the

same address was returned for a parameter in successive test

runs. We compared the occurrences of these duplicates

with the amount of duplicates we would expect if all sample

values were equally likely. This comparison is shown in

Table 2. Again, due to the number of samples no

meaningful conclusions can be drawn from the stack

measurements.

Item Expected Observed Difference

Stack < 1 / < 1 1 0% / 0%

Malloc 359 / 60 133 -63% / +120%

HeapAlloc 359 / 121 176 -51% / +45%

CreateHeap 359 / 55 130 -64% / +140%

Image 45 / 45 39 -13% / -13%

PEB 719 / 884 1,322 +84% / +50%

Table 2 – Comparison between the number of successive

duplicates expected and observed in each data set.

Expected values show how many duplicates are expected in

11,500 samples based on the theoretical range and based on

the observed range.

The occurrences of duplicates in heap and PEB addresses

deviate significantly from what is expected. Of 11,500

HeapAlloc address samples, successive samples reported

the same value 176 times or 1.5% of the time. If all 32

expected values were equally likely, the probability of

successive updates would be 3.1% and there would be about

359 duplicates, 51% more than were observed. If all 95

observed values were equally likely the probability of

successive duplicates would be 1.1% and there would be

only about 121 successive duplicates, 45% less than were

observed. This discrepancy suggests that the 95 observed

values are probably not uniformly distributed and there may

be some bias in the selection of heap addresses when using

HeapAlloc. To determine if this discrepancy was due to an

obvious pattern, we plotted the number of runs between

duplicate values to see if they yielded any obvious pattern,

but did not find any (see Appendix IV).

The deviation between expected and observed is even

larger for duplicates in the malloc and PEB samples.

Duplicates occurred 1.2 times as often as expected in heap

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 4

addresses returned by malloc where 133 duplicates account

for 1.2% of the samples rather than the 60 (0.5%) expected

if all 192 observed values were equally likely. Similarly

1,322 duplicates account for 11% of the PEB address

samples rather than the mere 719 (6.3%) expected if there

were 16 equally likely addresses. These discrepancies point

to even larger biases in the randomization of malloc and

PEB addresses.

Duplicates occurred 13% less often than expected in the

image addresses. This also suggests the presence of bias,

although the deviation is smaller than in the other instances.

B. Frequency Distribution Analysis

A distribution that has biases that favor some values over

other values is more predictable and has lower entropy. We

plotted the distributions of the samples for each parameter

we measured to identify any biases.

The distribution of the stack address is shown in Figure 2.

The graph shows a near-uniform distribution with no

significant biases. Combined with the large range this

indicates that the stack addresses should be fairly

unpredictable.

Figure 2 – Distribution of stack addresses.

Significant biases are apparent in the distribution of heap

addresses as seen in Figure 3. These parameters also have a

much smaller range. As seen in Figure 4, there is also bias

in the distribution of code addresses (which are affected by

randomization of the image base address) although these

biases are not as profound as those seen in the heap

distributions.

Figure 3 – Distribution of heap addresses using malloc,

HeapAlloc and HeapAlloc with CreateHeap.

Finally, PEB randomization shows a significant bias to

one address. Figure 5 shows that 25% of all executions

chose a single address and another 10% of all executions

chose a second address. These two addresses were chosen

35% of the time and the remaining eleven addresses were

chosen only 65% of the time.

Figure 4 – Distribution of code addresses.

Figure 5 – Distribution of PEB addresses.

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 5

Because the distributions of image base, heap and PEB

addresses have biases, they are more predictable than their

range measurements alone would indicate. For example, if

all 16 PEB addresses were equally likely, an attacker would

have a 6.25% chance of guessing the PEB address but

because of biases an attacker can make a single guess that is

correct 25% of the time.

IV. CONCLUSIONS

This paper shows that the stack, heap, image and PEB

protected by ASLR on Microsoft Windows Vista 32bit

RTM have different frequency distributions. While the stack

has near uniform distribution over a very wide range, the

heap and PEB, and to a lesser degree the image base have

much smaller ranges and because of biases in their

distributions do not efficiently use this range. As a result,

the protection offered by ASLR under Windows Vista may

not be as robust as expected. Microsoft has acknowledged

the problems with PEB and image vase randomization and

indicated that it is caused by a weakness in the

implementation.

This paper also shows that applications that leverage

Microsoft’s HeapAlloc()function are not afforded the

same level of protection as those that leverage the ANSI C

heap allocation API malloc(). The impact of which is

that third party software that explicitly use Microsoft’s API,

are potentially more vulnerable from successful exploitation

than software that does not. Also apparent is that using

CreateHeap() then HeapAlloc() improves the

entropy slightly over solely using malloc().

Finally, results show that there are less consecutive

duplicates than expected in the PEB randomization. This

result adds to the evidence that the source of entropy used

within ASLR is poorly used.

ACKNOWLEDGMENT

The author would like to acknowledge the help and

support of Oliver Friedrichs, Matt Conover, Zulfikar

Ramzan, of Symantec and Tim Newsham of iSEC Partners.

The author would also like to acknowledge Nitin Kumar

Goel, of Microsoft who reviewed this research and provided

candid feedback.

REFERENCES

[1] E. Berger, DieHard, http://www.cs.umass.edu/~emery/diehard/.

[2] R. Brown, DieHarder,

http://www.phy.duke.edu/~rgb/General/dieharder.php.

[3] I. Hellen, V. Kumar, “Security Engineering in Vista,” Sep. 2006,

http://packetstormsecurity.org/hitb06/DAY_1_-

_Ian_Hellen_and_Vishal_Kumar_-

_Security_Engineering_in_Vista.pdf.

[4] M. Howard, “Address Space Layout Randomization for Windows,”

Sep. 2005,

http://blogs.msdn.com/michael_howard/archive/2005/09/30/475763.

aspx.

[5] M. Howard, “Address Space Layout Randomization in Windows

Vista,” May 2006,

http://blogs.msdn.com/michael_howard/archive/2006/05/26/608315.

aspx.

[6] M. Howard, “Alleged Bugs in Windows Vista’s ASLR

Implementation,” Oct. 2006,

http://blogs.msdn.com/michael_howard/archive/2006/10/04/Alleged-

Bugs-in-Windows-Vista_1920_s-ASLR-Implementation.aspx.

[7] Microsoft, “Microsoft Portable Executable and Common Object File

Format Specification,” May 2006,

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF

.mspx.

[8] N. Goel, Microsoft, Private communications, Jan. 2007.

[9] Pageexec, “Protecting against Pointer Subterfuge (Redux),”

Dailydave mailing list, Oct 2006,

http://archives.neohapsis.com/archives/dailydave/2006-q4/0028.html

[10] A. Rahbar, “An analysis of Microsoft Windows Vista’s ASLR,” Oct.

2006, http://www.sysdream.com/articles/Analysis-of-Microsoft-

Windows-Vista’s-ASLR.pdf.

[11] Security Architects, Ozone,

http://www.securityarchitects.com/products.html.

[12] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, D. Boneh,

“On the Effectiveness of Address-Space Randomization,” In

Proceedings of 11th ACM Conference on Computer and

Communications Security, Oct. 2004,

http://www.stanford.edu/~blp/papers/asrandom.pdf.

[13] Tuxedo-es, “Microsoft Windows Vista: Measuring the security

enhancements,” Jun. 2006, http://www.tuxedo-

es.org/blog/2006/06/11/microsoft-windows-vista-measuring-the-

security-enhancements/.

[14] Tuxedo-es, “Microsoft Windows Vista beta-2 build 5384: Vista-

Probe 0.1 results,” Jun. 2006, http://www.tuxedo-

es.org/blog/2006/06/13/microsoft-windows-vista-beta-2build-5384-

vista-probe-01-results/.

[15] Tuxedo-es, “Vista Probe 0.1 release,” Jun. 2006, http://www.tuxedo-

es.org/blog/2006/06/15/vista-probe-01-released/.

[16] Tuxedo-es, “Vista Probe 0.2 release,” Jul. 2006, http://www.tuxedo-

es.org/blog/2006/07/06/vista-probe-02-release/.

[17] Tuxedo-es, “Vista Probe 0.2 test case sources,” http://pearls.tuxedo-

es.org/win32/vista-probe-0.2_tests_sources.zip.

[18] Wehnus, “Whentrust,” http://www.wehntrust.com/.

[19] O. Whitehouse, “Vista address space randomization data,” Feb 2007,

Available via E-Mail

[20] Wikipedia, “Address Space Layout Randomization,”

http://en.wikipedia.org/wiki/Address_Layout_Randomization.

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 6

I. ASLR.CPP

The following code was used to collect the source data for the analysis of ASLR.

//
// (c)2006 Symantec Corporation
// Ollie Whitehouse – ollie_whitehouse@symantec.com
//

#include "stdafx.h"

// ---
// Function: Banner
// Description: Print banner
// ---
void banner(){
 fprintf(stdout,"---\n");
 fprintf(stdout,"ASLR - v0.1\n");
 fprintf(stdout,"(c)2006 Symantec Corporation\n");
 fprintf(stdout,"---\n\n");
}

//
// Prints the location of the function in memory
// This is used to validate .code randomization
//
int verifyCode(FILE *fileCSV)
{
 fprintf(stdout,"%0.8p\n",verifyCode);
 fprintf(fileCSV,"%0.8p\n",verifyCode);

 return 0;
}

//
// Some of this function taken from Phrack 62
// Prints the location of the PEB in memory
//
int verifyPEB(FILE *fileCSV)
{
 DWORD* dwPebBase = NULL;

 /* Return PEB address for current process
 address is located at FS:0x30 */
 __asm
 {
 push eax
 mov eax, FS:[0x30]
 mov [dwPebBase], eax
 pop eax
 }

 fprintf(stdout,"%0.8X,",(DWORD)dwPebBase);
 fprintf(fileCSV,"%0.8X,",(DWORD)dwPebBase);

 return 0;
}

//
// Prints the location of a new heap in memory
//
int verifyHeapviaHeapCreate(FILE *fileCSV)
{
 HANDLE hHeap;
 ULONG_PTR *varFoo;

 hHeap=HeapCreate(NULL,1024,2048);
 if(hHeap==NULL){
 fprintf(stdout,"error,");
 return 1;
 } else {
 varFoo=(ULONG_PTR *) HeapAlloc(hHeap,0,100);

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 7

 if(varFoo==NULL){
 fprintf(stdout,"error,");
 return 1;
 } else {
 fprintf(stdout,"%0.8p,",varFoo);
 fprintf(fileCSV,"%0.8p,",varFoo);
 HeapFree(hHeap,0,varFoo);
 return 0;
 }
 HeapDestroy(hHeap);
 }

 return 0;
}

//
// Prints the location of the heap in memory
//
int verifyHeapviaHeapAlloc(FILE *fileCSV)
{
 ULONG_PTR *varFoo;

 varFoo=(ULONG_PTR *) HeapAlloc(GetProcessHeap(),0,100);

 if(varFoo==NULL){
 fprintf(stdout,"error,");
 return 1;
 } else {
 fprintf(stdout,"%0.8p,",varFoo);
 fprintf(fileCSV,"%0.8p,",varFoo);
 HeapFree(GetProcessHeap(),0,varFoo);
 return 0;
 }

 return 0;
}

//
// Prints the location of the heap in memory
//
int verifyHeapviaMalloc(FILE *fileCSV)
{
 char *varFoo;

 varFoo=(char *) malloc(100);

 if(varFoo==NULL){
 fprintf(stdout,"error,");
 return 1;
 } else {
 fprintf(stdout,"%0.8p,",varFoo);
 fprintf(fileCSV,"%0.8p,",varFoo);
 free(varFoo);
 return 0;
 }

 return 0;
}

//
// Prints the location of the stack in memory
//
int verifyStack(FILE *fileCSV)
{
 int intFoo=1;

 fprintf(stdout,"%0.8p,",&intFoo);
 fprintf(fileCSV,"%0.8p,",&intFoo);

 return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
 FILE *fileCSV;
 TCHAR strFileName[MAX_PATH];

 banner();

 if(argc==2){

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 8

 _snwprintf_s(strFileName,MAX_PATH-1,_T("%s\\ASLR.csv"),argv[1]);
 //fwprintf(stdout,_T("%s\n"),strFileName);
 fileCSV=_wfopen(strFileName,_T("a"));
 } else {
 fileCSV=fopen("ASLR.csv","a");
 }

 if(fileCSV==NULL){
 fprintf(stdout,"[!] Couldn't open output file! Exiting!\n");
 return 1;
 }

 fprintf(stdout,"+-------+--------+--------+--------+--------+--------+\n");
 fprintf(stdout," Stack | Heap 1 | Heap 2 | Heap 3 | PEB | Code\n");
 fprintf(stdout,"+-------+--------+--------+--------+--------+--------+\n");

 verifyStack(fileCSV);
 verifyHeapviaMalloc(fileCSV);
 verifyHeapviaHeapAlloc(fileCSV);
 verifyHeapviaHeapCreate(fileCSV);
 verifyPEB(fileCSV);
 verifyCode(fileCSV);

 fclose(fileCSV);
 return 0;
}

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 9

II. RESEED.BAT

@echo off
REM (c) 2006 Symantec Corp – Ollie Whitehouse – ollie_whitehouse@symantec.com
REM This might seem a little strange but due to some odd instances
REM of not being able to delete/overwrite the executables (although the
REM original process should of finished) because of ‘Access Denied’
REM this is the best way I found to do it without having to put an inefficient
REM ‘sleep’ in
:Reseed
Copy /Y ASLR.exe ASLR-1.exe
Copy /Y ASLR.exe ASLR-2.exe
Copy /Y ASLR.exe ASLR-3.exe
Copy /Y ASLR.exe ASLR-4.exe
Copy /Y ASLR.exe ASLR-5.exe
Copy /Y ASLR.exe ASLR-6.exe
Copy /Y ASLR.exe ASLR-7.exe
Copy /Y ASLR.exe ASLR-8.exe
Copy /Y ASLR.exe ASLR-9.exe
Copy /Y ASLR.exe ASLR-A.exe
Copy /Y ASLR.exe ASLR-B.exe
Copy /Y ASLR.exe ASLR-C.exe
Copy /Y ASLR.exe ASLR-D.exe
Copy /Y ASLR.exe ASLR-E.exe
Copy /Y ASLR.exe ASLR-F.exe
ASLR-1.exe
ASLR-2.exe
ASLR-3.exe
ASLR-4.exe
ASLR-5.exe
ASLR-6.exe
ASLR-7.exe
ASLR-8.exe
ASLR-9.exe
ASLR-A.exe
ASLR-B.exe
ASLR-C.exe
ASLR-D.exe
ASLR-E.exe
ASLR-F.exe
Del ASLR-1.exe
Del ASLR-2.exe
Del ASLR-3.exe
Del ASLR-4.exe
Del ASLR-5.exe
Del ASLR-6.exe
Del ASLR-7.exe
Del ASLR-8.exe
Del ASLR-9.exe
Del ASLR-A.exe
Del ASLR-B.exe
Del ASLR-C.exe
Del ASLR-D.exe
Del ASLR-E.exe
Del ASLR-F.exe
Goto Reseed

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 10

III. HEAP ADDRESS SELECTION

The following graph sample shows for heap ASLR the difference in the addresses it selects for each run. The X axis is the run

number and the Y axis is the address selected.

We can see from this small sample that there is no apparent pattern in address selection. The above is also true for the complete

sample.

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 11

IV. RUNS BETWEEN CONSECUTIVE VALUES

The following graph shows the 134 instances where adjacent runs resulted in the same memory address from the HeapAlloc()

function. With a uniform distribution over a space with 2^8 (=256) elements, the probability that two consecutive memory

addresses are the same is 1/256. Based on the results produced by the author we can see the Vista implementation is actually 134

from 11,500, which results in a likelihood of 1 in 85. This result is significantly higher than expected.

The number of runs between these 134 instances were then plotted, the result of which can be seen below. We can see that there

was no obvious pattern which reduces the likelihood of an attacker accurately predicting the number of reboots required before

the same memory address would be used consecutively.

0

50

100

150

200

250

300

350

400

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 129 133

Instance of Consecutive Values

N
u
m
b
e
r
 o
f
R
u
n
s
 S
in
c
e
 L
a
s
t
C
o
n
s
e
c
u
ti
v
e
 V
a
lu
e

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 12

V. DISTRIBUTION GRAPH - STACK

The following graph shows the frequency distribution of values for each of the stack locations observed during the execution of

11,500 instances.

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 13

VI. DISTRIBUTION GRAPH – HEAP (VIA HEAPALLOC FUNCTION)

The following graph shows the frequency distribution of values for each of the heap locations observed during the execution of

11,500 instances. These were used via the HeapAlloc() function, which is a Windows specific API function.

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 14

VII. DISTRIBUTION GRAPH – HEAP (VIA MALLOC FUNCTION)

The following graph shows the frequency distribution of values for each of the heap locations observed during the execution of

11,500 instances. These were used via the malloc() function, which is a ANSI C API.

VIII. DISTRIBUTION GRAPH – HEAP (VIA CREATHEAP AND HEAPALLOC FUNCTIONS)

The following graph shows the frequency distribution of values for each of the heap locations observed during the execution of

11,500 instances. These were used via the CreateHeap()and the HeapAlloc() functions, which are Windows specific

APIs.

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 15

IX. DISTRIBUTION GRAPHS - IMAGE

The following graph shows the frequency distribution of values for each of the image locations observed during the execution of

11,500 instances.

ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 16

X. DISTRIBUTION GRAPHS –PROCESS ENVIRONMENT BLOCK

The following graph shows the frequency distribution of values for each of the PEB locations observed during the execution of

11,500 instances.

