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Abstract: Address Space Layout Randomization (ASLR) is a 

prophylactic security technology aimed at reducing the 

effectiveness of exploit attempts. With the advent of Microsoft 

Windows Vista, ASLR has been integrated into the default 

configuration of a Microsoft Windows operating system for the 

first time. We measure the behavior of the ASLR 

implementation in the Vista RTM release. Our analysis of the 

results uncovers predictability in the implementation that 

reduces its effectiveness. 

 
Index Terms: Address Space Layout Randomization, ASLR, 

Security, Microsoft, Windows, Vista, Visual Studio, 

/Dynamicbase 

I. INTRODUCTION 

Address space layout randomization, or ASLR, is a 

prophylactic security technology that increases system 

security by increasing the diversity of attack targets [20].  

Rather than increasing security by removing vulnerabilities 

from the system, ASLR makes it more difficult to exploit 

existing vulnerabilities. This technology is complementary 

to efforts to remove security vulnerabilities since it can offer 

some protection for vulnerabilities that are not yet known or 

have not yet been remedied.  ASLR is also complementary 

to other prophylactic techniques such as Data Execution 

Prevention (DEP) since the combination of both 

technologies provides a much stronger defense against   

memory manipulation vulnerabilities than either one alone. 

 

Techniques for exploiting memory manipulation 

vulnerabilities are sensitive to the memory layout of the 

program being targeted.  This important class of 

vulnerability includes stack and heap overflows, 

underflows, format string vulnerabilities, array index 

overflows and uninitialized variables.  By randomizing the 

memory layout of an executing program, ASLR decreases 

the predictability of the memory layout and reduces the 

probability that an individual exploit attempt will succeed.  

The security offered by ASLR is based on several factors 

[12], including how predictable the random memory layout 

of a program is, how tolerant an exploit technique is to 

variations in memory layout, and how many exploitation 

attempts an attacker can practically make. 

 
 

 

Address space layout randomization has been integrated 

into and available for several popular operating systems 

such as OpenBSD and Linux for several years.  Third-party 

ASLR implementations have been available for previous 

versions of the Microsoft Windows operating systems as 

stand-alone products or as part of a Host intrusion 

protection (HIPS) solutions [1][2][4][11][18].  With the 

advent of Microsoft Windows Vista, ASLR has been 

integrated into the default configuration of a Microsoft 

Windows operating system for the first time [5]. 

 

We measured the behavior of the address space layout 

randomization feature in the 32-bit Vista RTM release.  

This paper presents our measurements and discusses our 

measurement techniques.  Our analysis uncovers some flaws 

that reduce the effectiveness of Vista’s ASLR 

implementation. 

 

A. Previous Work 

There have been several efforts to describe and measure 

the ASLR implementation in Vista.  The first is described in 

the tuxedo-es.org blog [13] and supported by the release of 

their VistaProbe tool [14][15][16][17].  This was followed 

shortly by a paper by Rahbar [10] but it’s analysis was 

refuted by Howard [6].  Both efforts used a beta release of 

Vista to make their measurements since a release version 

was not yet available. 

 

To our knowledge our work is the first to measure the 

ASLR implementation in the Vista RTM release.  Unlike 

previous work, we rebooted the test system between 

measurements to measure ASLR in the environment it was 

intended to be used in.  While previous work relied on a 

small number of measurements to draw conclusions, we 

took a much larger number of measurements and expect our 

results to have more statistical significance.  Finally, we 

report several important and unexpected deficiencies in the 

ASLR implementation that were not previously reported 

and have since been acknowledged by Microsoft. 

 

B. Outline 

The remainder of this paper is organized as follows:  

Section II describes the ASLR implementation provided by 
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Vista and describes our methodology for measuring its 

behavior.  Section III presents and analyzes the 

measurements we made.  Section IV presents our 

conclusions based on the analysis. 

II. ASLR IN VISTA 

Windows Vista provides address space layout 

randomization on a per-image basis.  Any executable image 

which contains a PE header, such as executable binaries 

(.exe) and dynamic link libraries (.dll), can elect to 

participate in address space layout randomization.  This 

election is made by setting a bit (0x40) in one of the PE 

header fields (DLLCHARACTERISTICS) [7].  An option 

(/dynamicbase) is provided by the Microsoft Visual Studio 

2005 linker for setting this bit when linking an image. 

 

While loading an image that has elected to participate in 

ASLR the system uses a random global image offset.  This 

offset is selected once per reboot, although we’ve 

uncovered at least one other way to cause this offset to be 

reset without a reboot (see Appendix II).  The image offset 

is selected from a range of 256 values and is 64kB aligned.  

This offset and the other random parameters are generated 

pseudo-randomly [3]. All images loaded together into a 

process, including the main executable and DLLs, are 

loaded one after another at this offset.  Because image 

offsets are constant across all processes a DLL that is 

shared between processes can be loaded at the same address 

in all processes for efficiency. 

 

When executing a program whose image has been marked 

for ASLR the memory layout of the process is further 

randomized by randomly placing the thread stack and the 

process heaps.  The stack address is selected first.  The 

stack region is selected from a range of 32 possible 

locations, each separated by 64kB or 256kB (depending on 

the STACK_SIZE setting).  Once the stack has been placed, 

it the initial stack pointer is further randomized by 

decrementing it a random amount.  The initial offset is 

selected to be up to half a page (2048 bytes) but is limited 

to naturally aligned addresses (four byte alignment on IA32 

and 16 byte alignment on IA64).  The choices result in an 

initial stack pointer chosen from one of 16384 possible 

values on an IA32 system. 

 

After the stack address has been selected, the process 

heaps are selected.  Each heap is allocated from a range of 

32 different locations, each separated by 64kB.  The 

location of the first heap must be chosen to avoid the 

previously placed stack, and each of the following heaps 

must be allocated to avoid those allocated before it.   

 

The address of an operating system structure known as the 

Process Environment Block (PEB) is also selected 

randomly. The PEB randomization feature was introduced 

earlier in Windows XP SP2 and Windows 2003 SP1 and is 

also present in Windows Vista.  Although implemented 

separately it is also a form of address space randomization 

but unlike the other ASLR features, PEB randomization 

occurs whether or not the executable being loaded elected 

to use the ASLR feature. 

 

An important result of Vista’s ASLR design is that some 

address space layout parameters such as PEB, stack and 

heap locations are selected once per program execution. 

Other parameters, such as the location of the program code, 

data segment, BSS segment and libraries, change only 

between reboots. 

A. Methodology 

We measured Vista’s ASLR implementation to verify its 

behavior and to determine how random the memory layout 

of loaded programs is.  We constructed a program to log 

several important addresses associated with the program 

each time it is executed.  To measure the randomization of 

the image base address the test program prints the address 

of a function in the code segment.  To measure the 

randomization of the stack, it prints the address of an 

automatic variable.  To measure the randomization of the 

PEB structure it prints the address of the PEB.  Finally it 

measures the placement of three heaps.  It measures the 

CRT heap by printing the first value returned by malloc.  It 

prints the first values returned by HeapAlloc using the 

default process heap, and using a heap created with 

HeapCreate.   

 

We compiled our test program with Microsoft Visual 

Studio 2005 SP1 Beta and linked it statically.  The program 

source is listed in Appendix I.  When executed repeatedly 

with the same environment on a machine that does not 

support ASLR or PEB randomization, this program reports 

the same constants each time.  Any variation in the output is 

due solely to the effects of ASLR. 

 

Some ASLR parameters are only set once per system 

boot
1
.  To properly measure the effects of ASLR we 

decided to reboot the system between measurements.  We 

configured an AMD Ahtlon 3200 system running 32-bit 

Windows Vista RTM to automatically log in and run our 

data collection utility during system startup and then to 

reboot.  This setup closely mimics the environment of long 

running servers which are executed once during system 

startup.  Our test harness was used to collect samples from 

11,500 test runs over the course of twelve days.  The 

complete data is being made available [19]. 

III. ANALYSIS 

We analyzed the results of our measurements to quantify 

the amount of randomness introduced into the memory 

layout of a process by the ASLR implementation.  Figure 1 

show the collected data for HeapAlloc addresses plotted as 

a series of samples.  The plot reveals no noticeable patterns, 

indicating some amount of randomness.  Plots for the other 

measured addresses were similar and are not included here. 

 
1 Normally; as noted previously. 
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Figure 1 – 11,500 HeapAlloc samples. 

 

To compare the implementation design with our 

measurements we analyzed the data to determine how many 

different value each parameter can have.  Table 1 shows a 

count of unique values found in the 11,500 samples taken 

for each measurement and compares this count to the 

expected range dictated by the design.   

 

The observed range of stack addresses differs from what 

is expected but it is clear that our 11,500 samples are not 

large enough to properly measure the full range and no 

conclusions can be drawn. 

 

Item Expected Observed Difference 

Stack 16384   (2
14
) 8,568 -48% 

Malloc2 >= 32   (>= 2
5
) 192 +500% 

HeapAlloc
3
 >= 32   (>= 2

5
)
 

95 +200% 

CreateHeap
4
 >= 32   (>= 2

5
) 209 +550% 

Image 256      (2
8
) 255 -0.4% 

PEB 16        (2
4
) 13 -19% 

Table 1 – Comparison between the number of unique 

values observed and expected in each data set. 

 

The observed range of heap addresses differs considerably 

from each other and from their expected values.  All three 

heap allocations show more variability than expected.  This 

may indicate that our description of heap address selection 

is incomplete or incorrect.  Another possible explanation is 

that heap use during program startup is non-deterministic 

and adds to the randomness of our samples.  One surprising 

result is that the observed range of HeapAlloc locations is 

much smaller than the range of addresses allocated using 

malloc! In 11,500 runs we observed 95 unique addresses 

were returned by HeapAlloc() while 192 unique 

addresses were returned by malloc(). The difference in 

usage reveals that applications that utilize the Microsoft 

HeapAlloc()  function  are at greater risk than those that 

utilize the ANSI C malloc() API.  This could be due to 

 
2 Heap allocation using the malloc function. 
3 Heap allocation using the HeapAlloc function and the default process 

heap. 
4 Heap allocation using HeapAlloc and a heap created with the 

CreateHeap function. 

the order in which heaps are allocated.  A heap that is 

created later will have to be placed at an address not 

occupied by previously allocated heaps, reducing the 

amount of randomness in its placement. 

 

A. Occurrences of duplicates 

The range of a random variable does not tell the whole 

story.  The protection offered by ASLR depends on the 

entropy of the parameters, that is, how unpredictable they 

are.  The entropy of a parameter with a given range is 

highest (most unpredictable) when all values are equally 

likely.   

 

We observed a significant number of instances where the 

same address was returned for a parameter in successive test 

runs.  We compared the occurrences of these duplicates 

with the amount of duplicates we would expect if all sample 

values were equally likely.  This comparison is shown in 

Table 2.  Again, due to the number of samples no 

meaningful conclusions can be drawn from the stack 

measurements. 

 

Item Expected Observed Difference 

Stack < 1 / < 1 1 0% / 0% 

Malloc 359 / 60 133 -63% / +120% 

HeapAlloc 359 / 121 176 -51% / +45% 

CreateHeap 359 / 55 130 -64% / +140% 

Image 45 / 45 39 -13% / -13% 

PEB 719 / 884 1,322 +84% / +50% 

Table 2 – Comparison between the number of successive 

duplicates expected and observed in each data set.  

Expected values show how many duplicates are expected in 

11,500 samples based on the theoretical range and based on 

the observed range. 

 

The occurrences of duplicates in heap and PEB addresses 

deviate significantly from what is expected.  Of 11,500 

HeapAlloc address samples, successive samples reported 

the same value 176 times or 1.5% of the time.  If all 32 

expected values were equally likely, the probability of 

successive updates would be 3.1% and there would be about 

359 duplicates, 51% more than were observed.  If all 95 

observed values were equally likely the probability of 

successive duplicates would be 1.1% and there would be 

only about 121 successive duplicates, 45% less than were 

observed.  This discrepancy suggests that the 95 observed 

values are probably not uniformly distributed and there may 

be some bias in the selection of heap addresses when using 

HeapAlloc. To determine if this discrepancy was due to an 

obvious pattern, we plotted the number of runs between 

duplicate values to see if they yielded any obvious pattern, 

but did not find any (see Appendix IV).  

 

The deviation between expected and observed is even 

larger for duplicates in the malloc and PEB samples.  

Duplicates occurred 1.2 times as often as expected in heap 
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addresses returned by malloc where 133 duplicates account 

for 1.2% of the samples rather than the 60 (0.5%) expected 

if all 192 observed values were equally likely.  Similarly 

1,322 duplicates account for 11% of the PEB address 

samples rather than the mere 719 (6.3%) expected if there 

were 16 equally likely addresses.  These discrepancies point 

to even larger biases in the randomization of malloc and 

PEB addresses. 

 

Duplicates occurred 13% less often than expected in the 

image addresses.  This also suggests the presence of bias, 

although the deviation is smaller than in the other instances. 

 

B. Frequency Distribution Analysis 

A distribution that has biases that favor some values over 

other values is more predictable and has lower entropy.  We 

plotted the distributions of the samples for each parameter 

we measured to identify any biases. 

 

The distribution of the stack address is shown in Figure 2.  

The graph shows a near-uniform distribution with no 

significant biases.  Combined with the large range this 

indicates that the stack addresses should be fairly 

unpredictable. 

 

 
Figure 2 – Distribution of stack addresses. 

 

Significant biases are apparent in the distribution of heap 

addresses as seen in Figure 3.  These parameters also have a 

much smaller range.  As seen in Figure 4, there is also bias 

in the distribution of code addresses (which are affected by 

randomization of the image base address) although these 

biases are not as profound as those seen in the heap 

distributions.   

 

 

 
 

 
Figure 3 – Distribution of heap addresses using malloc, 

HeapAlloc and HeapAlloc with CreateHeap. 

 

Finally, PEB randomization shows a significant bias to 

one address.  Figure 5 shows that 25% of all executions 

chose a single address and another 10% of all executions 

chose a second address.  These two addresses were chosen 

35% of the time and the remaining eleven addresses were 

chosen only 65% of the time. 

 

 
Figure 4 – Distribution of code addresses. 

 

 
Figure 5 – Distribution of PEB addresses. 
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Because the distributions of image base, heap and PEB 

addresses have biases, they are more predictable than their 

range measurements alone would indicate.  For example, if 

all 16 PEB addresses were equally likely, an attacker would 

have a 6.25% chance of guessing the PEB address but 

because of biases an attacker can make a single guess that is 

correct 25% of the time. 

IV. CONCLUSIONS 

This paper shows that the stack, heap, image and PEB 

protected by ASLR on Microsoft Windows Vista 32bit 

RTM have different frequency distributions. While the stack 

has near uniform distribution over a very wide range, the 

heap and PEB, and to a lesser degree the image base have 

much smaller ranges and because of biases in their 

distributions do not efficiently use this range.  As a result, 

the protection offered by ASLR under Windows Vista may 

not be as robust as expected.  Microsoft has acknowledged 

the problems with PEB and image vase randomization and 

indicated that it is caused by a weakness in the 

implementation. 

 

This paper also shows that applications that leverage 

Microsoft’s HeapAlloc()function are not afforded the 

same level of protection as those that leverage the ANSI C 

heap allocation API malloc(). The impact of which is 

that third party software that explicitly use Microsoft’s API, 

are potentially more vulnerable from successful exploitation 

than software that does not. Also apparent is that using 

CreateHeap() then HeapAlloc() improves the 

entropy slightly over solely using malloc().  

 

Finally, results show that there are less consecutive 

duplicates than expected in the PEB randomization.  This 

result adds to the evidence that the source of entropy used 

within ASLR is poorly used. 
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I.  ASLR.CPP 

The following code was used to collect the source data for the analysis of ASLR. 
 
// 
// (c)2006 Symantec Corporation 
// Ollie Whitehouse – ollie_whitehouse@symantec.com 
// 
 
#include "stdafx.h" 
 
 
// ------------------------------------------------------------------------- 
// Function: Banner 
// Description: Print banner 
// ------------------------------------------------------------------------- 
void banner(){ 
 fprintf(stdout,"-------------------------------------------------------------------------\n"); 
 fprintf(stdout,"ASLR - v0.1\n"); 
 fprintf(stdout,"(c)2006 Symantec Corporation\n"); 
 fprintf(stdout,"-------------------------------------------------------------------------\n\n"); 
} 
 
// 
// Prints the location of the function in memory 
// This is used to validate .code randomization 
//  
int verifyCode(FILE *fileCSV) 
{ 
 fprintf(stdout,"%0.8p\n",verifyCode); 
 fprintf(fileCSV,"%0.8p\n",verifyCode); 
  
 return 0; 
} 
 
// 
// Some of this function taken from Phrack 62 
// Prints the location of the PEB in memory 
//  
int verifyPEB(FILE *fileCSV) 
{ 
 DWORD* dwPebBase = NULL; 
  
 /* Return PEB address for current process 
    address is located at FS:0x30 */ 
  __asm  
  { 
   push eax 
   mov eax, FS:[0x30] 
   mov [dwPebBase], eax 
   pop eax 
  } 
 
 fprintf(stdout,"%0.8X,",(DWORD)dwPebBase); 
 fprintf(fileCSV,"%0.8X,",(DWORD)dwPebBase); 
  
 return 0; 
} 
 
// 
// Prints the location of a new heap in memory 
// 
int verifyHeapviaHeapCreate(FILE *fileCSV) 
{ 
 HANDLE  hHeap; 
 ULONG_PTR *varFoo; 
 
 hHeap=HeapCreate(NULL,1024,2048); 
 if(hHeap==NULL){ 
  fprintf(stdout,"error,"); 
  return 1; 
 } else { 
  varFoo=(ULONG_PTR *) HeapAlloc(hHeap,0,100); 



ADVANCED THREAT RESEARCH – ©2007 Symantec Corporation 7 

 
  if(varFoo==NULL){ 
   fprintf(stdout,"error,"); 
   return 1; 
  } else { 
   fprintf(stdout,"%0.8p,",varFoo); 
   fprintf(fileCSV,"%0.8p,",varFoo); 
   HeapFree(hHeap,0,varFoo); 
   return 0; 
  } 
  HeapDestroy(hHeap); 
 } 
 
 return 0; 
} 
 
// 
// Prints the location of the heap in memory 
// 
int verifyHeapviaHeapAlloc(FILE *fileCSV) 
{ 
 ULONG_PTR *varFoo; 
 
 varFoo=(ULONG_PTR *) HeapAlloc(GetProcessHeap(),0,100); 
 
 if(varFoo==NULL){ 
  fprintf(stdout,"error,"); 
  return 1; 
 } else { 
  fprintf(stdout,"%0.8p,",varFoo); 
  fprintf(fileCSV,"%0.8p,",varFoo); 
  HeapFree(GetProcessHeap(),0,varFoo); 
  return 0; 
 } 
 
 return 0; 
} 
 
// 
// Prints the location of the heap in memory 
// 
int verifyHeapviaMalloc(FILE *fileCSV) 
{ 
 char *varFoo; 
 
 varFoo=(char *) malloc(100); 
 
 if(varFoo==NULL){ 
  fprintf(stdout,"error,"); 
  return 1; 
 } else { 
  fprintf(stdout,"%0.8p,",varFoo); 
  fprintf(fileCSV,"%0.8p,",varFoo); 
  free(varFoo); 
  return 0; 
 } 
 
 return 0; 
} 
 
// 
// Prints the location of the stack in memory 
// 
int verifyStack(FILE *fileCSV) 
{ 
 int intFoo=1; 
 
 fprintf(stdout,"%0.8p,",&intFoo); 
 fprintf(fileCSV,"%0.8p,",&intFoo); 
 
 return 0; 
} 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
 FILE *fileCSV; 
 TCHAR strFileName[MAX_PATH]; 
 
 banner(); 
 
 if(argc==2){ 
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  _snwprintf_s(strFileName,MAX_PATH-1,_T("%s\\ASLR.csv"),argv[1]); 
  //fwprintf(stdout,_T("%s\n"),strFileName); 
  fileCSV=_wfopen(strFileName,_T("a")); 
 } else { 
  fileCSV=fopen("ASLR.csv","a"); 
 } 
 
 if(fileCSV==NULL){ 
  fprintf(stdout,"[!] Couldn't open output file! Exiting!\n"); 
  return 1; 
 } 
 
 fprintf(stdout,"+-------+--------+--------+--------+--------+--------+\n"); 
 fprintf(stdout," Stack  | Heap 1 | Heap 2 | Heap 3 |  PEB   |  Code\n"); 
 fprintf(stdout,"+-------+--------+--------+--------+--------+--------+\n"); 
     
 verifyStack(fileCSV); 
 verifyHeapviaMalloc(fileCSV); 
 verifyHeapviaHeapAlloc(fileCSV); 
 verifyHeapviaHeapCreate(fileCSV); 
 verifyPEB(fileCSV); 
 verifyCode(fileCSV); 
   
 fclose(fileCSV); 
 return 0; 
} 
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II. RESEED.BAT 

 
@echo off 
REM (c) 2006 Symantec Corp – Ollie Whitehouse – ollie_whitehouse@symantec.com 
REM This might seem a little strange but due to some odd instances 
REM of not being able to delete/overwrite the executables (although the 
REM original process should of finished) because of ‘Access Denied’ 
REM this is the best way I found to do it without having to put an inefficient 
REM ‘sleep’ in 
:Reseed 
Copy /Y ASLR.exe ASLR-1.exe 
Copy /Y ASLR.exe ASLR-2.exe 
Copy /Y ASLR.exe ASLR-3.exe 
Copy /Y ASLR.exe ASLR-4.exe 
Copy /Y ASLR.exe ASLR-5.exe 
Copy /Y ASLR.exe ASLR-6.exe 
Copy /Y ASLR.exe ASLR-7.exe 
Copy /Y ASLR.exe ASLR-8.exe 
Copy /Y ASLR.exe ASLR-9.exe 
Copy /Y ASLR.exe ASLR-A.exe 
Copy /Y ASLR.exe ASLR-B.exe 
Copy /Y ASLR.exe ASLR-C.exe 
Copy /Y ASLR.exe ASLR-D.exe 
Copy /Y ASLR.exe ASLR-E.exe 
Copy /Y ASLR.exe ASLR-F.exe 
ASLR-1.exe 
ASLR-2.exe 
ASLR-3.exe 
ASLR-4.exe 
ASLR-5.exe 
ASLR-6.exe 
ASLR-7.exe 
ASLR-8.exe 
ASLR-9.exe 
ASLR-A.exe 
ASLR-B.exe 
ASLR-C.exe 
ASLR-D.exe 
ASLR-E.exe 
ASLR-F.exe 
Del ASLR-1.exe 
Del ASLR-2.exe 
Del ASLR-3.exe 
Del ASLR-4.exe 
Del ASLR-5.exe 
Del ASLR-6.exe 
Del ASLR-7.exe 
Del ASLR-8.exe 
Del ASLR-9.exe 
Del ASLR-A.exe 
Del ASLR-B.exe 
Del ASLR-C.exe 
Del ASLR-D.exe 
Del ASLR-E.exe 
Del ASLR-F.exe 
Goto Reseed 
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III. HEAP ADDRESS SELECTION 

The following graph sample shows for heap ASLR the difference in the addresses it selects for each run. The X axis is the run 

number and the Y axis is the address selected. 

 
 

We can see from this small sample that there is no apparent pattern in address selection. The above is also true for the complete 

sample. 
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IV. RUNS BETWEEN CONSECUTIVE VALUES 

The following graph shows the 134 instances where adjacent runs resulted in the same memory address from the HeapAlloc() 

function. With a uniform distribution over a space with 2^8 (=256) elements, the probability that two consecutive memory 

addresses are the same is 1/256. Based on the results produced by the author we can see the Vista implementation is actually 134 

from 11,500, which results in a likelihood of 1 in 85. This result is significantly higher than expected.  

 

The number of runs between these 134 instances were then plotted, the result of which can be seen below. We can see that there 

was no obvious pattern which reduces the likelihood of an attacker accurately predicting the number of reboots required before 

the same memory address would be used consecutively. 
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V. DISTRIBUTION GRAPH - STACK 

The following graph shows the frequency distribution of values for each of the stack locations observed during the execution of 

11,500 instances.  
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VI. DISTRIBUTION GRAPH – HEAP (VIA HEAPALLOC FUNCTION) 

The following graph shows the frequency distribution of values for each of the heap locations observed during the execution of 

11,500 instances. These were used via the HeapAlloc() function, which is a Windows specific API function. 
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VII. DISTRIBUTION GRAPH – HEAP (VIA MALLOC FUNCTION) 

The following graph shows the frequency distribution of values for each of the heap locations observed during the execution of 

11,500 instances. These were used via the malloc() function, which is a ANSI C API. 

 

VIII. DISTRIBUTION GRAPH – HEAP (VIA CREATHEAP AND HEAPALLOC FUNCTIONS) 

The following graph shows the frequency distribution of values for each of the heap locations observed during the execution of 

11,500 instances. These were used via the CreateHeap()and the  HeapAlloc() functions, which are Windows specific 

APIs. 
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IX. DISTRIBUTION GRAPHS - IMAGE 

The following graph shows the frequency distribution of values for each of the image locations observed during the execution of 

11,500 instances.  
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X. DISTRIBUTION GRAPHS –PROCESS ENVIRONMENT BLOCK 

The following graph shows the frequency distribution of values for each of the PEB locations observed during the execution of 

11,500 instances.  

 

 
 

 


