

# Volatools: Integrating Volatile Memory into the Digital Investigation Process

AAron Walters Nick L. Petroni, Jr. {awalters,npetroni} [at] komoku.com

February 28, 2007



#### Introduction

- Objectives
  - Emphasize value of memory analysis
  - Summarize state of the art
  - Help you improve your process
  - Show some demos
  - Give away free tools!
- Approach: Top-down
- Who we are
  - OS/Security researchers



### Agenda

- Overview of investigative process
- Current limitations and challenges
- "Runtime state" analysis
  - Live response
  - Volatile memory analysis
- Demo tools
- Advanced techniques/anti-forensics
- Future of volatile memory analysis



### **Typical Scenario**

- 1. User/admin notices sign of intrusion/crime
- 2. RAM dumped, live response performed
- 3. Machine removed from network
- 4. Power off
- 5. Image hard drive
- 6. Initial analysis
- 7. Recover/reinstall
- 8. Detailed analysis

Require training and resources



#### **Digital Investigation Process Model**

- Why these steps?
- Why this order?
- Process model
  - Organize and standardize procedures
  - View the process as a whole
- Digital crime scene
  - Not just another piece of evidence
  - Many types of evidence (memory)



#### **IDIP Digital Crime Scene**





#### "Runtime State" Analysis

- Go beyond "at rest" objects
- Analyze "in motion" state of system
- Advantage:
  - Much more context
  - Info that may be lost
- Helps with current challenges



#### **Live Response**

- What is live response?
  - Relatively new phenomenon
  - Tools/commands run on live machine
  - Provides important context and "active" state
  - Response strategy (economics, etc.)
- Typical information collected:
  - Running processes
  - Open network connections
  - Patch level/OS version
  - Network configuration
  - Open files
  - ..



#### Live Response Tools

- Response toolkits
  - USB/CD Helix
  - WFT, IRCR, FRED, COFEE, RAPIER
  - SysInternals, Foundstone tools
- Commercial agent-based
  - WetStone, Guidance, Mandiant, ProDiscover



#### **Live Response Limitations**

- Live response and IDIP
  - Secure and preserve output, not raw data
- Results not reproducible
- Can't ask new questions later
- Requires OS trust
- Impact on system
  - State, memory, swap, disk, network, etc.
  - Hard to characterize changes (but important)



#### Host OS

© 2007 Komoku, Inc.



### **Obtrusiveness of Collection**

- Quantify impact of live response
- Metric: # bytes changed after WFT tool
- More impact than letting machine run for 15hrs





| 256MB | 76.9% |
|-------|-------|
| 512MB | 89.8% |



#### **Live Response**

- Live response:
  - System administration tools, query the OS
  - Extra context is valuable!
  - Consider your goals/constraints carefully
  - Need to further investigate impact
  - Understand limitations
  - Take a memory dump FIRST!



### **Volatile Memory Analysis**

- RAM contains all of the same info
- Already collected in many cases
- Instead of/addition to live response
- Helps address live response limitations



### **Volatile Memory Analysis**

- Integration into IDIP
  - Separates data collection and data analysis
- Impact on the system
  - Reduced to a function of acquisition mechanism
- Repeatability
  - Verifiable by third party reviewer
- Asking new questions later
  - Query the original data store
- Trust
  - Minimizes trust placed in system



# **Public Tools and Techniques**

- List-walkers/table crawlers
  - Technique: data structures act as roadmap
  - Tools: kntlist (Garner), memparser (Betz), WMFT (Burdach)
- Linear scanning
  - Technique: scan for "reliable pattern"
  - Tools: PTfinder (Schuster), Istools (Carvey), ProcessLocator (Vidas)



#### **Volatools Basic**

- Why another set of survey tools?
- What is Volatools Basic?
  - Open source (training implementation)
  - Python implementation
  - Command-line utilities
  - 32-bit Vanilla XP SP2 (no MP)
  - Provide similar info to live response
  - Operates directly on RAM images
  - Completely repeatable results



#### **Volatools Basic**

- Date and time
- Running processes
- Open ports
- Process to port mappings
- Strings to process mappings
- Process to file mappings
- Process to DLL mappings
- Open network connections



#### **Volatools Basic**

#### **VOLATOOLS Basic DEMOS**

February 28, 2007

© 2007 Komoku, Inc.



#### **Challenge: Volume of Evidence**

- Increasing volume of evidence associated with incident (collected, stored, analyzed)
  - File systems
  - Network traffic
- Target leads
  - Context-free methods (Carrier, 2005)
- Volatile targeting
  - Triage time-sensitive data
  - Link analysis



# **Encryption Challenge**

- Increasing use of encryption
  - Encrypted files/file systems (TrueCrypt, BitLocker)
  - Encrypted network traffic
- How do investigators deal with encryption?
  - Coercion
  - Brute force
  - etc.
- Time consuming (if successful)



#### **Encrypted File Systems**

#### Three guilty of identity fraud which netted millions

"In January last year Dolgov's offices were raided, but the haul would almost certainly have been much greater had not one of the gang's members, Estonian Aleksei Kostap, thrown a power switch which blanked out the bank of computers on which the operation relied and triggered layers of encryption."

David Pallister Friday December 1, 2006 The Guardian

February 28, 2007



#### **Volatile Memory & Encryption**

- Volatile memory analysis might:
  - Determine if encryption is being used
  - Extract volatile artifacts
- Volatile artifacts
  - Unencrypted content
  - Keying material (Klein, 2006)
  - Passwords/passphrases (Boileau, 2006)
- Keying material
  - File systems



# TrueCrypt 4.2a

- Free open-source file system encryption
  - http://www.truecrypt.org/
- "On the fly encryption" (OTFE)
- Advanced features
  - Virtual encrypted disks (containers)
  - Cross platform
  - "Plausible deniability"
    - Hidden volumes
    - Indistinguishable volumes



#### **TrueCrypt Volumes**

Standard volume format

Standard Volume Header



#### • Hidden volume format





#### **Standard Volume Header**



February 28, 2007

© 2007 Komoku, Inc.



# Linux TrueCrypt

- Device Mapper target
  - Logical volume management
  - Virtual block device
- Target constructor
  - (void \*) dm\_target->private
  - target\_ctx->ci
  - CRYPTO\_INFO->master\_key
- Keying material persists in RAM!!



### **Extracting Keys: Linux**



- Major/minor numbers mapped to TrueCrypt virtual block device
- Traverse data structures to TrueCrypt context
- Extract keys!!!





#### TRUECRYPT DEMO

© 2007 Komoku, Inc.



# **Encryption Caveats**

- Availability of source code
- OTFE
  - Interactive and transparent
- Kernel support
  - Linux Device Mapper: dm\_target
  - Windows: DeviceExtension
- Performance
- Cryptographic principles



# **Challenges/Anti-Forensics**

- Temporal proximity/persistence
  - Active objects
  - Non-reclaimed inactive objects (Chow, 2004)
- Blurry snapshot
  - Semantic inconsistencies
- Acquisition subversion
  - Bilby and Rutkowska
  - Virtualization and hardware



#### **Data Hiding**

 List walking techniques susceptible to unlinking (DOM)



• Linear scanning techniques susceptible to member manipulation (non-essential)

© 2007 Komoku, Inc.



#### **Data Decoys**

- False positives/leads
  - Increase noise to signal ratio
- Context insensitive scan
- "Life-like" decoys
- Extreme: decoy operating system
  - Registers, swap, caches



#### **Future Work**

- More advanced analysis techniques
- Quantifying tool obtrusiveness
- Incorporate volatile memory analysis into your digital investigation process



# **Auxiliary Information**

- Mailing list: Volatile memory mailing list
  - http://www.4tphi.net/fatkit
- Andreas Schuster:
  - http://computer.forensikblog.de/en/
- Harlan Carvey:
  - http://windowsir.blogspot.com
- Jesse Kornblum:
  - http://jessekornblum.livejournal.com
- Mariusz Burdach:
  - http://seccure.blogspot.com/

February 28, 2007



#### **Contact Information**

- Download Volatools Basic!
- http://www.komoku.com/volatools
- Contact:
  - awalters [at] komoku.com
  - npetroni [at] komoku.com