Exploiting Similarity Between Variants to Defeat Malware

“Vilo” Method for Comparing and Searching Binary Programs

Andrew Walenstein
University of Louisiana at Lafayette

Blackhat DC 2007
Outline

Motivation
- Few Families, Many Variants
- The Role of Program Binary Comparisons

Vilo: Program Search Methods
- Feature Comparison Approach
- Weighting and Search

Evaluation
- Evaluation Design
- Performance Evaluation
- Accuracy Evaluation
Variety: The Spice of ALife

According to Microsoft’s data [MSIR2006]:
- 97,924 variants in first half of 2006
 - e.g. 3,320 variants of Win32/Rbot, from 5,706 unique files
- that’s > 22 per hour
Microsoft’s Data [MSIR2006]

Data source:

- Win32/R$bot
- Win32/Banker
- Win32/Hupigon
- Win32/Sdbot
- Win32/Small
- Win32/Bancos
- Win32/Agent
- Remaining Top 25
- Rest

Motivation
Search Methods
Evaluation

a. Few Families, Many Variants
So Few Families, So Many Variants

- Clearly all these are **not** new, built-from-scratch!
 - only a few hundred families typical in 6-month period
 [SISTR2006, MSIR2006]

- Variants thus outnumber families by around 500:1
 - top 7 families account for > 1 out of 2 variants
 - top 25 families account for > 3 out of 4 variants
 - good bet:
 - any new malicious program is a variant of a previous one
Malware Evolution Drivers

- What is driving this explosion of variety?
 - cost of constructing malware
 - reduced cycle time for new signature updates
Malware can be costly to develop from scratch
 - a new family can be a substantial investment in time & effort
 - malware authors wish to protect existing investments

Their **problem**: malware detectors catch their code

Their **solution**: change the code
 - can be minor tweaks to throw off signatures
 - cheaper to modify than to build from scratch
 - changes could also be bug fixes, updates, feature additions
 - i.e. standard software evolution

a. Few Families, Many Variants
Update Rate Driver

- **Malware author problem:** rapid signature updates
 - now: daily, sometimes even hourly

- **Their solution:** update frequently
 - can expect signature update rate to pace evolution
 - i.e.: \(\text{rate(malware_evolution)} \propto \text{rate(signature_updates)} \)
 - mutation rate increasing to match signature update rates
Impact of Variation on Malware Defense

- Adds layer of complication
 - defense was bad enough before variant flood
 - now malware is a constantly changing target

- Need: systematic ways of coping with variations
 - otherwise rapid evolution becomes DOS attack
 - i.e. flood the limited pool of anti-malware researchers
Why Does Variation Even Work?

- We know most variants differ only slightly
 - shouldn’t this be a significant attack weakness?
- Seems ripe for a counter-attack:
 - AV community has plenty of past samples
 - often only minor changes are made between variants
 - shouldn’t smaller changes = easier detection?
- What is needed:
 - methods for comparing programs to previous ones
 - i.e. ways of searching for matching programs
 - i.e., program similarity measures
Uses for Program Similarity

Measures

- Suppose we had a suitable measure
 - it can compare whole program binaries
 - it is insensitive to minor tweaks and changes

- What might be done with it?

- Two possibilities:
 - automated defenses (?)
 - minor tweaks currently slip past automated defenses
 - support tools for anti-malware researchers
 - high numbers of variants creates burdens on analysts
 - they spend greater fraction of time on already-known threats

b. The Role of Binary Program Comparisons
Current Analyst Scenario

Analyst needs to:

- **Establish malware family**
 - minimal organization-wide resources to consult
 - heavy reliance on past experience, Google

- **Find differences affecting signature matching**
 - ad hoc discovery utilizing manual inspection

- **Figure out how to update the signatures**
 - manual discovery of differences

- **Look for familial similarities**
 - do not want new signature for every variant
 - without whole-family comparison, can miss commonalities
Future Analyst Scenario

Scenario from the future:

- **New unknown sample arrives**
- **Closely related samples are retrieved automatically**
 - analyst need not have seen the family before
- **Associated signatures & documentation are recalled**
 - past efforts are quickly leveraged (organizational knowledge)
- **Analysis of differences highlights changed parts**
 - allows analyst to quickly focus on how to fix signatures
- **Analysis of similarities highlights common features**
 - helps analyst determine how to create generic signatures
Impact to Analyst Scenario

- Direct impact on anti-malware business
 - comparisons help for vast majority of new samples
 - is a critical part of infrastructure, workflow
 - benefits:
 - reduces time to signature release
 - improves detection rates
 - gives team more time to attend to high priority issues
Future Automated Detection Scenario?

Scenario from the future:

- New sample arrives
- It is compared against a database of known malware
- Too similar to existing malware sample?
 - it is filtered
 - what valid program is 99% Win32.Bagle?
- System preemptively defends against close family members
OK, But How?

- The question is: how to compare programs binaries?
- Three key comparison issues considered:
 - Sensitivity of comparison to minor changes
 - adding single C instruction can changed all jump targets
 - reordering statements or procedures
 - Dealing with common code
 - e.g. common libraries, compiler-inserted code
 - Simplicity of analysis method
 - efficiency is always an issue
 - wish to avoid costly analysis like control flow graph extraction

Vilo approach to program comparison
Outline

Motivation
- Few Families, Many Variants
- The Role of Program Binary Comparisons

Vilo: Program Search Methods
- Feature Comparison Approach
- Weighting and Search

Evaluation
- Evaluation Design
- Performance Evaluation
- Accuracy Evaluation
A Program Comparison Approach

- Adaptation of text search and analysis techniques

- Three key ideas underlying the approach:
 - Base similarity comparison on matching code “features”
 - use whole-program comparison, i.e. comprehensive sets
 - Vector model for comparison
 - fast, easy to calculate
 - Statistical weighting for features
 - automatic filtering of “uninteresting” features

- Additional focus: code similarity
 - particular focus is when minor changes are made
 - then it’s important to select the right features

Motivation Search Methods Evaluation

a. Feature Comparison Approach
Feature Comparison Approach

- Comparison is based on some set of features

FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Chair 1</th>
<th>Chair 2</th>
<th>Chair 3</th>
<th>Chair 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of legs</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>has a back?</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>amount of cushioning</td>
<td>low</td>
<td>none</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>is black?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
Feature Comparison Approach

- Comparison of objects means comparison of whole list of features

- Example
 - Differences: one leg, cushioning
 - Commonalities: has as back, color
Feature Approach Tradeoffs

- Advantages
 - flexibility: use whatever features make sense
 - order insensitivity: ordering is irrelevant
 - unless features are order sensitive
- However: must get the features right
- Question: what features to use for programs?
n-Grams As Features

- n-gram is a sequence of n “characters” in a row
 - n is typically 2 or 3
 - “characters” can be defined as words, letters, etc.
 - characters can be filtered

- Example: 2-grams, lower-cased ASCII text, whitespace filtered
 - for “The cat is in.”
 - th he ec ca at ti is si in
 - for “Is the cat in?”
 - is st th he ec ca at ti in
 - difference between two: si / st
 - commonalities: at, ca, ec, he, in, is, th, ti

Motivation Search Methods Evaluation

a. Feature Comparison Approach
n-grams As Features: Tradeoffs

- Advantages
 - relatively insensitive to order permutation
 - simple to extract automatically
 - easy to compare for commonalities, differences

- Disadvantages
 - number of features can be high
 - some sensitivity to ordering
 - sensitivity related to size of n
 - if n is high, any change can affect many features
n-grams Applied to Programs

- Many ways of defining and selecting “characters”
 - could use raw bytes
 - could use extracted strings
 - could use disassembly text
 - could be a combination of any of the above

- We have used all of these
 - they all do certain things well

- Our focus here: applications to code, specifically
 - not as well studied
 - difficult for malware author to change

- Approach: use abstracted, disassembled program
n-Grams Using Abstracted Assembly

Many ways to encode assembly
- raw assembly could work
 - convert directly as in text retrieval
- main problem: sensitivity to change
 - inserted instruction changes branch targets
 - data changes, register swaps, all can be unimportant

Approach: use only the operations as characters
- “noise” in the operands do not affect the match
- cannot match on data
- but captures something of the program essence
n-Grams Encoding of Operations

2-gram tally

<table>
<thead>
<tr>
<th>2-gram</th>
<th>tally</th>
</tr>
</thead>
<tbody>
<tr>
<td>push_mov</td>
<td>1 1</td>
</tr>
<tr>
<td>mov_mov</td>
<td>1</td>
</tr>
<tr>
<td>mov_push</td>
<td>1</td>
</tr>
<tr>
<td>push_cltd</td>
<td>1</td>
</tr>
<tr>
<td>cltd_push</td>
<td>1</td>
</tr>
</tbody>
</table>

55
- push ebp
- mov $0x11,eax

b8 11 00 00 00
- mov esp,ebp
- push edi

89 e5
- cltd

57
- push esi

99
- mov $0x11,0xffe4(ebp)

56
- cltd

c7 45 e4 11 00 00 00
- mov $0x11,0xffe4(ebp)
Reducing Order Sensitivity: n-Perms

- n-grams are sequence specific
 - n-grams over operation sequences are sensitive to ordering
 - modifications may change the orderings
 - e.g. permuting order of non-dependent statements

- Defined n-perms as variants of n-grams
 - difference: match does not consider order of characters
 - “the” matches “teh” matches “eth”
n-Perm Encoding of Operations

55	b8 11 00 00 00	push ebp
89	e5	mov $0x11,eax
57		mov esp,ebp
99		push edi
56		cltd
c7 45 e4 11 00 00 00	push esi	
	mov	$0x11,0xffe4(ebp)

2-perm Tally

<table>
<thead>
<tr>
<th>2-perm</th>
<th>tally</th>
</tr>
</thead>
<tbody>
<tr>
<td>push_mov</td>
<td>1 1 1</td>
</tr>
<tr>
<td>mov_mov</td>
<td>1</td>
</tr>
<tr>
<td>push_cltd</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Motivation

- Search Methods
- Evaluation

| 04/01/2007 | Blackhat DC |
Walenstein | Exploiting Similarity | Between Variants |
Motivation | Search Methods | Evaluation |
a. Feature Comparison Approach
Differences Between Grams/Perms

- Advantages of \(n \)-perms over \(n \)-grams
 - number of features is reduced (for equivalent \(n \))
 - “the” and “teh” are distinct features under \(n \)-grams
 - reduce sensitivity to order changes
 - e.g., code permutations, such as statement reordering

- Disadvantages
 - false matches more likely for any given \(n \)
 - must use larger \(n \) to reduce false matches

- \(n \)-perms appear to work well on code [PHYLO2005]
 - part of a pending patent
Vector-Based Similarity Calculation

- Each feature is treated as a dimension
 - programs are summarized as a vector of feature counts
 - i.e. mapped to points in a multi-dimensional space
 - e.g. $\text{num_legs} = [5, 1, 2, 1]$
Vector Representation of Assembly

Frequency counts turned into vector

- \[[3 \ 1 \ 2] \]
Vectors Comparison

- Vectors compared by measuring their cosine angle
 - think: high similarity = arrows pointing in the same direction
 - e.g., $v_1 = [3, 1, 2]$ compared to $v_2 = [4, 0, 5]$

$$\frac{v_1 \cdot v_2}{|v_1| |v_2|} = \frac{3 \times 4 + 1 \times 0 + 2 \times 5}{\sqrt{3^2 + 1^2 + 2^2} \sqrt{4^2 + 0^2 + 5^2}} = 0.918$$
Feature Interestingness

- Not all features are equally interesting
 - e.g., standard function epilogues
 - occur many times, are in essentially all programs
 - e.g., standard linked-in features
 - startup and exit code, standard libraries
 - such features should not be as important for similarity
 - may be interesting to know two viruses use same libraries
 - but do not want similarity scores to reflect primarily that

- Needed:
 - a way to adjust how important the features are
 - and do not wish to manually or statically do this
Solution: Statistical Weighting

- Idea comes from text retrieval’s “TF x IDF” scheme
 - idea: weight features according to inverse of commonality
 - common features = not interesting

- Approach:
 - select a corpus or database of malware
 - for each feature, count the number of samples it appears in
 - weight feature counts by dividing by the feature frequencies
 - e.g., if A appears in 10 out of 100, weight A counts by 1/10
 - (a variety of formulas can be used too)
Weighting Example

- Given two vectors for worms from a database of 10
 - \(\text{worm}_1: [3 \ 4 \ 2 \ 1] \)
 - \(\text{worm}_2: [4 \ 5 \ 1 \ 0] \)
 - cosine similarity: \(\text{sim}(\text{worm}_1,\text{worm}_2) = .958 \)

- Weighting the feature count vectors
 - feature counts: \([9 \ 8 \ 3 \ 2] \)
 - i.e., feature 1 is in 9 out of 10 samples
 - \(\text{weighted}_1: [3/9 \ 4/8 \ 2/3 \ 1/2] = [0.33 \ 0.25 \ 0.66 \ 0.50] \)
 - \(\text{weighted}_2: [4/9 \ 5/8 \ 1/3 \ 0/2] = [0.44 \ 0.63 \ 0.33 \ 0.00] \)
 - cosine similarity: \(\text{sim}(\text{weighted}_1, \text{weighted}_2) = .795 \)

- First two features are very common
 - weighted versions decrease their relative importance
Advantages of Weighting Scheme

- The scheme automatically scales common code
 - e.g., when same compiler used by multiple worms

- Weights can be automatically adjusted
 - can be incrementally calculated when adding new samples

- Can pre-weight the database
 - import standard library code as samples
 - initialize their feature counts with high values
 - serves to de-emphasize known irrelevant features
 - can be used to remove problem false matches
With similarity function, one can search a database

- collect together some known malware
- load the database with feature count vectors from these
- extract feature count vector from unknown program U
- for every vector in database
 - calculate weighted cosine similarity to U
- sort list of similarities

Result: ranked list of matches
Summary of Approach

- **Simplicity**
 - automatic way of extracting features
 - easy arithmetic for vector scaling and comparison
 - needs disassembly, but nothing else
 - compare: using control-flow-graphs or semantic graphs

- **Insensitivity to program modifications**
 - by design, is Insensitive to sequence
 - e.g. code motion and permutations
 - permutation affects only handful of features
 - particularly when using n-perms
 - compare: sequence-based approaches
 - e.g. longest common subsequence sensitive to block moves
Summary of Approach

- Ability to filter “uninteresting” features
 - automatic, based on corpus of samples
 - allows specific filtering without manually tuning features

- Flexibility
 - mix-and-match feature types
 - n-grams/perms, strings, bytes, etc.
Outline

- Motivation
 - Few Families, Many Variants
 - The Role of Program Binary Comparisons
- Vilo: Program Search Methods
 - Feature Comparison Approach
 - Weighting and Search

Evaluation

- Evaluation Design
- Performance Evaluation
- Accuracy Evaluation
How Well Does the Approach Work?

- Dimensions to evaluate
 - Does the search scale?
 - Can we search against useful sized databases?
 - Is accuracy good?
 - Will it catch minor variants?
 - How frequently will false positives occur?
- Two studies conducted to shed light on these
Apparatus

- Implementation of Vilo approach
 - core search implemented in C
 - reads database of feature count vectors
 - queries are other feature count vectors
 - returns ranked list of matches

- Implemented as an independent component
 - component part of “search-as-a-service” environment
 - runs as daemon under Linux
 - prototype web-based portal under development
Implementation Specifics

- For building a database:
 - disassembly currently using **objdump** (GNU binutils)
 - but have used IDA Pro™, but with some limitations
 - n.b., the programs must not be encrypted or packed
 - 10-perms used for our tests

- For querying:
 - feature count vector extracted same way
 - vector is sent to server, and results are read

- Interfaces:
 - server components and command line tools
 - JSP-based wrapper / interface
Samples matching the uploaded file

<table>
<thead>
<tr>
<th>Score</th>
<th>Size</th>
<th>Matched Sample Info</th>
<th>md5</th>
<th>compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>91,204</td>
<td>sample/Klez-H</td>
<td>74e3e172fe55e10b36078c481b514a2d</td>
<td>PE strings asm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ClamAV: Worm.Klez.H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BitDefender: Win32.Klez.H@mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>95,800</td>
<td>Worm.Klez.H-I-Worm.Klez.i</td>
<td>543c358d51a949d6584f568bc3ac465b</td>
<td>PE strings asm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ClamAV: Worm.Klez.H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BitDefender: Win32.Klez.l@mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>90,099</td>
<td>20050307-Worm-Klez-H-20050207-162358-bat</td>
<td>105958b332da020bb7f60eaa5f2faf25</td>
<td>PE strings asm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ClamAV: Worm.Klez.H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BitDefender: Win32.Klez.H@mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

04/01/2007 | Blackhat DC | Walenstein | Exploiting Similarity Between Variants

Motivation | Search Methods | Evaluation

a. Evaluation Design
Comparing PE Information

<table>
<thead>
<tr>
<th>Uploaded File</th>
<th>Matched File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>Identity</td>
</tr>
<tr>
<td>Ident</td>
<td>Worm.Klez.E-1</td>
</tr>
<tr>
<td>Size</td>
<td>61,440</td>
</tr>
<tr>
<td>Sections</td>
<td>Sections</td>
</tr>
<tr>
<td>Name</td>
<td>Start</td>
</tr>
<tr>
<td>.text</td>
<td>1000</td>
</tr>
<tr>
<td>.rcdata</td>
<td>d000</td>
</tr>
<tr>
<td>.data</td>
<td>f000</td>
</tr>
<tr>
<td>.rsrcc</td>
<td>14000</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Imports</td>
<td>Imports</td>
</tr>
<tr>
<td>KERNEL32.dll</td>
<td>KERNEL32.dll</td>
</tr>
<tr>
<td>ADVAPI32.dll</td>
<td>ADVAPI32.dll</td>
</tr>
<tr>
<td>WS2_32.dll</td>
<td>WS2_32.dll</td>
</tr>
<tr>
<td>MPR.dll</td>
<td>MPR.dll</td>
</tr>
<tr>
<td>Evaluation Design</td>
<td></td>
</tr>
</tbody>
</table>

Motivation
Search Methods
Evaluation
a. Evaluation Design
Comparing Strings

String Comparison

<table>
<thead>
<tr>
<th>Strings only in uploaded: "worm-Klez-H-090390.001"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not including dups: 3</td>
</tr>
<tr>
<td>Dups included: 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strings only in matched: "sample/Klez-H"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not including dups: 204</td>
</tr>
<tr>
<td>Dups included: 507</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strings Common to Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not including dups: 271</td>
</tr>
<tr>
<td>Dups included: 1116</td>
</tr>
</tbody>
</table>

Strings in Uploaded file "worm-Klez-H-090390.001" only

<table>
<thead>
<tr>
<th>Number</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$!*</td>
</tr>
<tr>
<td>2</td>
<td>01606</td>
</tr>
<tr>
<td>6</td>
<td>81606</td>
</tr>
</tbody>
</table>

Strings in Matched file "sample/Klez-H" only

<table>
<thead>
<tr>
<th>Number</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>!JS?/</td>
</tr>
<tr>
<td>2</td>
<td>#Eki]QS</td>
</tr>
<tr>
<td>2</td>
<td>#MWEs]SE</td>
</tr>
<tr>
<td>2</td>
<td>%SGE]cEhMKwE</td>
</tr>
<tr>
<td>2</td>
<td>%oGMgEi</td>
</tr>
<tr>
<td>2</td>
<td>'kEsg</td>
</tr>
<tr>
<td>2</td>
<td>'kEGU]IkQ</td>
</tr>
<tr>
<td>4</td>
<td>'kMScEek</td>
</tr>
<tr>
<td>2</td>
<td>)E 'IK/k]c]WEAE</td>
</tr>
<tr>
<td>4</td>
<td>)ElekE</td>
</tr>
<tr>
<td>2</td>
<td>)Egg]Ski?</td>
</tr>
<tr>
<td>2</td>
<td>)EkoEk</td>
</tr>
<tr>
<td>2</td>
<td>)H]Sg</td>
</tr>
<tr>
<td>6</td>
<td>)QGgaMkE7</td>
</tr>
</tbody>
</table>

(Click on HELP for an explanation of this page)
Comparing Disassembly

Motivation
Search Methods
Evaluation

a. Evaluation Design
Basic Performance Evaluation

- Query time is a critical performance issue
 - must be able to query against large enough database
 - should be interactive even when many samples involved

- Evaluation method:
 - load database with sample sets of different sizes
 - average times for 200 randomly selected samples
 - measure time and memory usage
 - query time only
 - not transmission and parsing overheads
Subject / Data Set

- Data was generated
 - did not have access to thousands of authentic variants

- Group properties of the dataset are important
 - query speed affected by sample sizes
 - memory use is affected by
 - number of families
 - evolution rate between variants
Data Set Construction / Properties

- Projected from collection of authentic samples
 - 542 samples collected from mail server and web
 - primarily worms and Trojans (Win32)

- Projection method
 - size of created samples projected from authentic distribution
 - 1 out of 2 are modified versions of another
 - evolution rate between versions is half a % difference
 - in practice, authentic variants are often much less different
Results: Memory & CPU Usage

Database Size

- Avg Query Time (milliseconds)
- Memory Usage (MB)
Accuracy Test Design

- Two error classes:
 - false negative: a good match was not reported
 - false positive: a match reported is not a good match
 - “good” match: known to be related or close in some way

- Evaluation method:
 - load database with samples
 - simulating typical menagerie of malice
 - derivation relationships known between samples
 - two query sessions using similarity threshold of .100 and .002
 - nothing returned less than these thresholds

- Measures:
 - precision and recall

Motivation Search Methods Evaluation

C. Accuracy Evaluation
Data Set Construction

- Data set is generated
 - 264 samples of Win32 malware selected from first
 - all are from top-25 families in 2006, as named by Microsoft [MSIR2006]
 - 36 of these identified as family constructed using construction kit
 - 202 variants constructed using construction kit in forensic environment
 - known to be derivatives by construction
 - related to the 36 collected from the wild
 - 466 samples total

[04/01/2007 | Blackhat DC | Walenstein Exploiting Similarity Between Variants]
Results and Discussion

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Mean Precision</th>
<th>Mean Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>.002</td>
<td>0.79</td>
<td>1.00</td>
</tr>
<tr>
<td>.100</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Limited test due to limitations of database
- Optimum threshold for data set is at .100
 - no point increasing threshold, since:
 - no fewer false positives (precision is 100%)
 - only fewer matches (recall drops)
 - still a small number
Conclusions

- Assembly-based vector matching is promising
 - simple and automatic
 - scalable to databases of 10s of thousands
 - at least efficient for interactive matching, such as in triage
 - designed to account for expected variation
 - via selection of whole-program feature matching
 - due to selection of feature types
 - good preliminary results
 - may be suitable for automated detection
References

 http://www.symantec.com/enterprise/threatreport/index.jsp
Acknowledgements

Current Members of the Software Research Laboratory

- Arun Lakhotia, Director
- Michael Venable, Research Associate
- Ph.D. Students
 - Mohamed R. Chouchane
 - Md.-Enam Karim
- M.Sc. Students
 - Matthew Hayes
 - Chris Thompson

Recent Graduates

- Aditya Kapoor, McAfee
- Eric Uday Kumar, Authentium
- Rachit Mathur, McAfee