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Variety:  The Spice of ALife

 According to Microsoft’s data [MSIR2006]:
 97,924 variants in first half of 2006

 e.g. 3,320 variants of Win32/Rbot, from 5,706 unique
files

 that’s > 22 per hour

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Microsoft’s Data [MSIR2006]

Data source:
Microsoft Security Intelligence Report:

Jan – Jun 2006

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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So Few Families, So Many Variants

 Clearly all these are not new, built-from-scratch!
 only a few hundred families typical in 6-month period

[SISTR2006, MSIR2006]

 Variants thus outnumber families by around 500:1
 top  7 families account for > 1 out of 2 variants
 top 25 families account for > 3 out of 4 variants
 good bet:

 any new malicious program is a variant of a previous
one

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Malware Evolution Drivers

 What is driving this explosion of variety?
 cost of constructing malware
 reduced cycle time for new signature updates

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Malware Construction Cost Drivers

 Malware can be costly to develop from scratch
 a new family can be a substantial investment in time &

effort
 malware authors wish to protect existing investments

 Their problem:  malware detectors catch their code

 Their solution:  change the code
 can be minor tweaks to throw off signatures

 cheaper to modify than to build from scratch
 changes could also be bug fixes, updates, feature additions

 i.e. standard software evolution

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation



04/01/2007 | Blackhat DC |
Walenstein     Exploiting Similarity
Between Variants 8

Update Rate Driver

 Malware author problem:  rapid signature updates
 now:  daily, sometimes even hourly

 Their solution:  update frequently
 can expect signature update rate to pace evolution

 i.e.: rate(malware_evolution) ∝  rate(signature_updates)
 mutation rate increasing to match signature update rates

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Impact of Variation on Malware
Defense
 Adds layer of complication

 defense was bad enough before variant flood
 now malware is a constantly changing target

 Need:  systematic ways of coping with variations
 otherwise rapid evolution becomes DOS attack
 i.e. flood the limited pool of anti-malware researchers

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Why Does Variation Even Work?

 We know most variants differ only slightly
 shouldn’t this be a significant attack weakness?

 Seems ripe for a counter-attack:
 AV community has plenty of past samples
 often only minor changes are made between variants
 shouldn’t smaller changes = easier detection?

 What is needed:
 methods for comparing programs to previous ones

 i.e. ways of searching for matching programs
 i.e., program similarity measures

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Uses for Program Similarity
Measures
 Suppose we had a suitable measure

 it can compare whole program binaries
 it is insensitive to minor tweaks and changes

 What might be done with it?

 Two possibilities:
 automated defenses (?)

 minor tweaks currently slip past automated defenses
 support tools for anti-malware researchers

 high numbers of variants creates burdens on analysts
 they spend greater fraction of time on already-known

threats

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation



04/01/2007 | Blackhat DC |
Walenstein     Exploiting Similarity
Between Variants 12

Current Analyst Scenario

Analyst needs to:

 Establish malware family
 minimal organization-wide resources to consult
 heavy reliance on past experience, Google

 Find differences affecting signature matching
 ad hoc discovery utilizing manual inspection

 Figure out how to update the signatures
 manual discovery of differences

 Look for familial similarities
 do not want new signature for every variant
 without whole-family comparison, can miss commonalities

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Future Analyst Scenario

Scenario from the future:

 New unknown sample arrives

 Closely related samples are retrieved automatically
 analyst need not have seen the family before

 Associated signatures & documentation are recalled
 past efforts are quickly leveraged (organizational

knowledge)

 Analysis of differences highlights changed parts
 allows analyst to quickly focus on how to fix signatures

 Analysis of similarities highlights common features
 helps analyst determine how to create generic signaturesb. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation



04/01/2007 | Blackhat DC |
Walenstein     Exploiting Similarity
Between Variants 14

Impact to Analyst Scenario

 Direct impact on anti-malware business
 comparisons help for vast majority of new samples

 is a critical part of infrastructure, workflow
 benefits:

 reduces time to signature release
 improves detection rates
 gives team more time to attend to high priority issues

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Future Automated Detection Scenario?

Scenario from the future:

 New sample arrives

 It is compared against a database of known malware

 Too similar to existing malware sample?
 it is filtered
 what valid program is 99% Win32.Bagle?

 System preemptively defends against close family members

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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OK, But How?

 The question is: how to compare programs binaries?

 Three key comparison issues considered:
Sensitivity of comparison to minor changes

 adding single C instruction can changed all jump targets
 reordering statements or procedures

Dealing with common code
 e.g. common libraries, compiler-inserted code

Simplicity of analysis method
 efficiency is always an issue
 wish to avoid costly analysis like control flow graph extraction

 … Vilo approach to program comparison

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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A Program Comparison Approach

 Adaptation of text search and analysis techniques

 Three key ideas underlying the approach:
Base similarity comparison on matching code “features”

 use whole-program comparison, i.e. comprehensive sets
Vector model for comparison

 fast, easy to calculate
Statistical weighting for features

 automatic filtering of “uninteresting” features

 Additional focus:  code similarity
 particular focus is when minor changes are made
 then its important to select the right features

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation



04/01/2007 | Blackhat DC |
Walenstein     Exploiting Similarity
Between Variants 19

Feature Comparison Approach

 Comparison is based on some set of features

Y
low
Y
4

YNYis black?
mediumhighnoneamount of cushioning

YNNhas a back?
503number of legs

FEATURES

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Feature Comparison Approach

 Comparison of objects means comparison of whole
list of features

 Example
 Differences:  one leg, cushioning
 Commonalities:  has as back, color

vs

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Feature Approach Tradeoffs

 Advantages
 flexibility:  use whatever features make sense
 order insensitivity:  ordering is irrelevant

 unless features are order sensitive

 However:  must get the features right

 Question:  what features to use for programs?

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-Grams As Features

 n-gram is a sequence of n “characters” in a row
 n is typically 2 or 3
 “characters” can be defined as words, letters, etc.
 characters can be filtered

 Example: 2-grams, lower-cased ASCII text, whitespace
filtered
 for “The cat is in.”

 th  he  ec  ca  at  ti  is  si  in
 for “Is the cat in?”

 is  st  th  he  ec  ca  at  ti  in
 difference between two:  si / st
 commonalities:  at, ca, ec, he, in, is, th, ti

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-grams As Features: Tradeoffs

 Advantages
 relatively insensitive to order permutation
 simple to extract automatically
 easy to compare for commonalities, differences

 Disadvantages
 number of features can be high
 some sensitivity to ordering

 sensitivity related to size of n
 if n is high, any change can affect many features

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-grams Applied to Programs

 Many ways of defining and selecting “characters”
 could use raw bytes
 could use extracted strings
 could use disassembly text
 could be a combination of any of the above

 We have used all of these
 they all do certain things well

 Our focus here:  applications to code, specifically
 not as well studied
 difficult for malware author to change

 Approach:  use abstracted, disassembled program

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-Grams Using Abstracted
Assembly
 Many ways to encode assembly

 raw assembly could work
 convert directly as in text retrieval

 main problem:  sensitivity to change
 inserted instruction changes branch targets
 data changes, register swaps, all can be unimportant

 Approach: use only the operations as characters
 “noise” in the operands do not affect the match
 cannot match on data
 but captures something of the program essence

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-Grams Encoding of Operations

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp) cltd_push

push_cltd

mov_push

mov_mov

push_mov

tally2-gram
11

1

1

1

1

1

1

1

1

1

1

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Reducing Order Sensitivity: n-
Perms
 n-grams are sequence specific

 n-grams over operation sequences are sensitive to
ordering

 modifications may change the orderings
 e.g. permuting order of non-dependent statements

 Defined n-perms as variants of n-grams
 difference:  match does not consider order of characters

 “the” matches “teh” matches “eth”

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-Perm Encoding of Operations

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp)

push_cltd

mov_mov

push_mov

tally2-perm
11

1

1

1

1

1

1

1

1 1

1

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Differences Between Grams/Perms

 Advantages of n-perms over n-grams
 number of features is reduced (for equivalent n)

 “the” and “teh” are distinct features under n-grams
 reduce sensitivity to order changes

 e.g., code permutations, such as statement reordering

 Disadvantages
 false matches more likely for any given n

 must use larger n to reduce false matches

 n-perms appear to work well on code [PHYLO2005]
 part of a pending patent

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Vector-Based Similarity Calculation

 Each feature is
treated as a
dimension
 programs are

summarized as a
vector of feature counts
 i.e. mapped to points

in a multi-
dimensional space

 e.g.
                       = [ 5 1 2 1 ]

padding

num_legs

has_back

5

4

3

2

1

0

1

1

2
3

4

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Vector Representation of Assembly

 Frequency counts turned into vector
 [ 3 1 2 ]

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp) 2

1

3

push_cltd

mov_mov

push_mov

freq2-perm

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Vectors Comparison

 Vectors compared by measuring their cosine angle
 think:  high similarity = arrows pointing in the same

direction
 e.g., v1 = [ 3 1 2 ] compared to v2 = [ 4 0 5 ]

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Feature Interestingness

 Not all features are equally interesting
 e.g., standard function epilogs

 occur many times, are in essentially all programs
 e.g., standard linked-in features

 startup and exit code, standard libraries
 such features should not be as important for similarity

 may be interesting to know two viruses use same libraries
 but do not want similarity scores to reflect primarily that

 Needed:
 a way to adjust how important the features are
 and do not wish to manually or statically do this

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Solution:  Statistical Weighting

 Idea comes from text retrieval’s “TF x IDF” scheme
 idea:  weight features according to inverse of commonality
 common features = not interesting

 Approach:
 select a corpus or database of malware
 for each feature, count the number of samples it appears in
 weight feature counts by dividing by the feature frequencies

 e.g., if A appears in 10 out of 100, weight A counts by 1/10
 (a variety of formulas can be used too)

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Weighting Example

 Given two vectors for worms from a database of 10
 worm1: [ 3 4 2 1 ]
 worm2: [ 4 5 1 0 ]
 cosine similarity:  sim(worm1,worm2) = .958

 Weighting the feature count vectors
 feature counts:  [ 9 8 3 2 ]

 i.e., feature 1 is in 9 out of 10 samples
 weighted1: [ 3/9 4/8 2/3 1/2 ] = [ .33 .25 .66 .50 ]
 weighted2: [ 4/9 5/8 1/3 0/2 ] = [ .44 .63 .33 .00 ]
 cosine similarity:  sim(weighted1, weighted2) = .795

 First two features are very common
 weighted versions decrease their relative importance

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Advantages of Weighting Scheme

 The scheme automatically scales common code
 e.g., when same compiler used by multiple worms

 Weights can be automatically adjusted
 can be incrementally calculated when adding new samples

 Can pre-weight the database
 import standard library code as samples
 initialize their feature counts with high values

 serves to de-emphasize known irrelevant features
 can be used to remove problem false matches

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Searching

 With similarity function, one can search a database
collect together some known malware
load the database with feature count vectors from these
extract feature count vector from unknown program U
for every vector in database

calculate weighted cosine similarity to U
sort list of similarities

 Result:  ranked list of matches

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Summary of Approach

 Simplicity
 automatic way of extracting features
 easy arithmetic for vector scaling and comparison
 needs disassembly, but nothing else
 compare:  using control-flow-graphs or semantic graphs

 Insensitivity to program modifications
 by design, is Insensitive to sequence

 e.g. code motion and permutations
 permutation affects only handful of features
 particularly when using n-perms

 compare:  sequence-based approaches
 e.g. longest common subsequence sensitive to block

moves

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Summary of Approach

 Ability to filter “uninteresting” features
 automatic, based on corpus of samples
 allows specific filtering without manually tuning features

 Flexibility
 mix-and-match feature types

 n-grams/perms, strings, bytes, etc.

b. Weighting and Search

Motivation   Search Methods   Evaluation
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How Well Does the Approach
Work?
 Dimensions to evaluate

Does the search scale?
 Can we search against useful sized databases?

 Is accuracy good?
 Will it catch minor variants?
 How frequently will false positives occur?

 Two studies conducted to shed light on these

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Apparatus

 Implementation of Vilo approach
 core search implemented in C

 reads database of feature count vectors
 queries are other feature count vectors
 returns ranked list of matches

 Implemented as an independent component
 component part of “search-as-a-service” environment
 runs as daemon under Linux
 prototype web-based portal under development

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Implementation Specifics

 For building a database:
 disassembly currently using objdump (GNU binutils)

 but have used IDA Pro™, but with some limitations
 n.b., the programs must not be encrypted or packed

 10-perms used for our tests

 For querying:
 feature count vector extracted same way
 vector is sent to server, and results are read

 Interfaces:
 server components and command line tools
 JSP-based wrapper / interface

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Matching

a. Evaluation Design

Motivation   Search Methods   Evaluation



04/01/2007 | Blackhat DC |
Walenstein     Exploiting Similarity
Between Variants 45

Comparing PE Information

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Comparing Strings

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Comparing Disassembly

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Basic Performance Evaluation

 Query time is a critical performance issue
 must be able to query against large enough database
 should be interactive even when many samples involved

 Evaluation method:
load database with sample sets of different sizes
average times fo 200 randomly selected samples
measure time and memory usage

 query time only
 not transmission and parsing overheads

b. Performance Evaluation

Motivation   Search Methods   Evaluation
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Subject / Data Set

 Data was generated
 did not have access to thousands of authentic variants

 Group properties of the dataset are important
 query speed affected by sample sizes
 memory use is affected by

 number of families
 evolution rate between variants

b. Performance Evaluation

Motivation   Search Methods   Evaluation
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Data Set Construction /
Properties
 Projected from collection of authentic samples

 542 samples collected from mail server and web
 primarily worms and Trojans (Win32)

 Projection method
 size of created samples projected from authentic

distribution
 1 out of 2 are modified versions of another
 evolution rate between versions is half a % difference

 in practice, authentic variants are often much less different

b. Performance Evaluation

Motivation   Search Methods   Evaluation
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Results:  Memory & CPU Usage

b. Performance Evaluation

Motivation   Search Methods   Evaluation
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Accuracy Test Design

 Two error classes:
 false negative:  a good match was not reported
 false positive:  a match reported is not a good match
 “good” match:  known to be related or close in some way

 Evaluation method:
 load database with samples

 simulating typical menagerie of malice
 derivation relationships known between samples

 two query sessions using similarity threshold of .100 and
.002
 nothing returned less than these thresholds

 measures:
 precision and recall c. Accuracy Evaluation

Motivation   Search Methods   Evaluation
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Data Set Construction

 Data set is generated
 264 samples of Win32 malware selected from first

 all are from top-25 families in 2006, as named by Microsoft
[MSIR2006]

 36 of these identified as family constructed using
construction kit

 202 variants constructed using construction kit in forensic
environment
 known to be derivatives by construction
 related to the 36 collected from the wild

 466 samples total

c. Accuracy Evaluation

Motivation   Search Methods   Evaluation
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Results and Discussion

 Limited test due to limitations of database

 Optimum threshold for data set is at .100
 no point increasing threshold, since:

 no fewer false positives (precision is 100%)
 only fewer matches (recall drops)

 still a small number

1.001.00.100

1.000.79.002

Mean RecallMean PrecisionThreshold

c. Accuracy Evaluation

Motivation   Search Methods   Evaluation
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Conclusions

 Assembly-based vector matching is promising
 simple and automatic
 scalable to databases of 10s of thousands

 at least efficient for interactive matching, such as in triage
 designed to account for expected variation

 via selection of whole-program feature matching
 due to selection of feature types

 good preliminary results
 may be suitable for automated detection
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