
Smashing Web Apps
Applying Fuzzing to Web Applications and Web Services

Michael Sutton, Security Evangelist

© SPI Dynamics 2007

Overview

• Background
– Vulnerability discovery methodologies
– What is fuzzing?

• Web application fuzzing
– Challenges
– Inputs
– Detection

• Web 2.0 fuzzing

• Fuzzing with Google

• Conclusions

© SPI Dynamics 2007

Whitebox vs. Blackbox

Whitebox Testing
• Internal perspective

• Static analysis

• Manual or automated testing
– Insecure programming practices
– Improper input validation

Blackbox Testing
• External perspective
• Run-time analysis
• Manual or automated testing

– Known vulnerabilities
– Unknown vulnerabilities

using System;

class HelloWorld
{
 public static int Main(String[] args)
 {
 Console.WriteLine("Hello world");
 return 0;
 }
}

© SPI Dynamics 2007

Vulnerability Discovery Methodologies

Verdict - There is no silver bullet.

Complex
Vulns.

False
Negatives

False
Positives

Speed

Code
Coverage

Automate
dManualAutomate

dManualAutomate
dManual

FuzzingSecurity
AuditBinary AuditingSource Code Analysis

© SPI Dynamics 2007

A Brief History of Fuzzing

© SPI Dynamics 2007

Fuzzing Approaches

1. Test cases
– Hard coded data packets or files
 Broad coverage of studied protocols
 Time consuming to develop
 Impractical for custom applications

2. Brute force fuzzing
– All possible values attempted
 Minimal preparation
 Broad coverage of targeted inputs
 Many wasted CPU cycles

3. Intelligent fuzzing
– Dynamically generated input adhering

to predefined constraints
 Decreased false negatives
 Time consuming to develop rules

PROTOS Test Suites

Examples

FileFuzz

SPIKE

© SPI Dynamics 2007

Fuzzing Phases

Identify

Target

Identify

Inputs

Generate

Fuzzed Data

Execute

Fuzzed Data

Monitor for

Exceptions

Determine

Exploitability

© SPI Dynamics 2007

Network vs. Web App Fuzzing

Code coverage

Detecting exceptions

Identifying inputs

Protocol structure

Availability of tools

Web ApplicationNetwork

© SPI Dynamics 2007

Web App Fuzzing - Challenges

• Multi-layered technology
– Web server, application server, database server, etc.

• Where does the vulnerability lie?

• Network latency
– Network creates a bottle neck

• How can we speed up the process?

• Exception detection
– Numerous signals must be monitored/reviewed

• Did we miss anything?

• Code coverage
– Tracking business logic reached

• How do we know when to stop?

© SPI Dynamics 2007

Web App Fuzzing - Inputs

• Request-URI
– /[path]/[page].[extension]?[name]=[value]& [name]=[value]

• Protocol
– HTTP/[major]. [minor]

• Headers
– [Header name]: [Header value]

• Post Data
– [Name1]=[Value1]&[Name2]=[Value2]

• Cookies
– Cookie: [Name1]=[Value1]; [Name2]=[Value2] ...

Think Outside the Box

© SPI Dynamics 2007

Input – Request-URI

/[path]/[page].[extension]?[name]=[value]& [name]=[value]
• Path

– Path traversal
• Page

– Predictable resource location
– Directory indexing
– Information leakage

• Extension
– Web filter bypass
– DoS

• Name
– Abuse of functionality (hidden functionality)

• Value
– SQL injection, XSS, file inclusion, command injection, etc.

• Separator
– Content spoofing (URI obfuscation)

© SPI Dynamics 2007

Input – Protocol

HTTP/[major]. [minor]
• Fuzz variables

– Unsupported protocol version
• HTTP 1.1 (RFC 2616)
• HTTP 1.0 (RFC 1945)
• HTTP 0.9 (Deprecated)

– Non-RFC compliant values
• HTTP X.Y
• HTTP 2.2
• AAAAA

• Proxy issues
– Request may altered/blocked by ‘non-transparent’ proxies

• RFC 2145 - Use and Interpretation of HTTP Version Numbers

© SPI Dynamics 2007

Input – Headers

[Header name]: [Header value]
• Buffer Overflow

– Content-Length
– User-Agent
– Accept Language
– Referer

• DoS
– Host

• Script/Code Injection
– User-Agent
– Referer

• SQL Injection
– User-Agent

© SPI Dynamics 2007

Input – Post Data

[Name1]=[Value1]&[Name2]=[Value2]

• Name
– Abuse of functionality (hidden functionality)

• Value
– SQL injection
– XSS
– File inclusion
– Command injection
– Buffer Overflows

© SPI Dynamics 2007

Case Study – Buffer Overflow

Linksys WRT54G Router Remote Admin apply.cgi Buffer Overflow

• CVE-2005-2799

• Exploit
POST /apply.cgi HTTP/1.1

Host: 192.168.1.1

...

A x 10000+

• Notes
– Buffer overflows rare for web applications
– Fuzzing web applications also tests underlying technologies

© SPI Dynamics 2007

Input – Cookies

Cookie: [Name1]=[Value1]; [Name2]=[Value2] ...

• Name

• Value
– Cross Site Request Forgery (CSRF)
– Credential/session prediction
– Insufficient authentication
– Insufficient session expiration
– SQL Injection
– XSS

© SPI Dynamics 2007

Case Study – Buffer Overflow

MyBB Index.PHP Referrer Cookie SQL Injection Vulnerability
• BID 16443
• Exploit

GET /index.php HTTP/1.1
Host: example.com
...
Cookie: referrer=

9999999999'%20UNION%20SELECT%20password,2,3,4,5,6
,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5
,6,7,8,9%20FROM%20mybb_users%20WHERE%20uid=1/*

• Notes
– Name/value pairs in cookies are often used to transfer values in

the same way that they are used in GET/POST requests

© SPI Dynamics 2007

Web App Fuzzing - Detection

• HTTP Status codes
– 200 OK – predictable resource location
– 403 Forbidden – Restricted page
– 500 Internal server error – Unhandled exception

• Web server error messages
– Verbose SQL error messages
– Information leakage

• Dropped connections

• Log files

• Event Logs

• Debuggers

© SPI Dynamics 2007

Web App Fuzzing - Tools

• Open Source
– WebFuzz

• michaelsutton.net/download/WebFuzz.zip

– SPIKE Proxy
• www.immunitysec.com/resources-freesoftware.shtml

– OWASP WebScarab
• www.owasp.org/index.php/Category:OWASP_WebScarab_Project

• Commercial
– SPI Fuzzer

• Included with SPIDynamics WebInspect

© SPI Dynamics 2007

Demo WebFuzz

Fuzzing.org

© SPI Dynamics 2007

• What is Web 2.0?
– "Web 2.0 is the business revolution in the computer industry

caused by the move to the internet as platform, and an
attempt to understand the rules for success on that new
platform. Chief among those rules is this: Build applications
that harness network effects to get better the more that
people use them."

– Tom O’Reilly

• What is Web 2.0?
– “A perceived or proposed second generation of Internet-

based services - such as social networking sites, wikis,
communication tools, and folksonomies - that emphasize
online collaboration and sharing among users.”

– Wikipedia

Fuzzing Web 2.0

• Web 2.0 vs. Web 1.0
Same vulnerabilities

+ Additional input vectors
= More complexity

© SPI Dynamics 2007

Web Services Fuzzing

© SPI Dynamics 2007

Web Services Fuzzing - Challenges

• Inputs
– XML parsing and generation
– Documented vs. undocumented

• WSDL (Web Services Description Language)

• Targets
– UDDI (Universal Description, Discovery and Integration)

• OASIS
– DISCO (Discovery of Web Services)

• Microsoft

• Protocol
– SOAP

• exchanging XML-based messages over HTTP

© SPI Dynamics 2007

Web Services Fuzzing - Inputs

• Identify Targets
– UDDI
– DISCO
– Etc.

• Identify Inputs - WSDL
– Blueprint for expected inputs

• Data types (i.e. integer)
• Data ranges (i.e. 1-1000)

– Facilitates intelligent fuzzing
• Generate fuzz variables outside of expected

inputs

Identify

Targets

Identify

Input

Generate

Fuzzed Data

Execute

Fuzzed Data

Monitor for

Exceptions

Determine

Exploitability

© SPI Dynamics 2007

Web Services Fuzzing – Inputs - WSDL

http://api.google.com/GoogleSearch.wsdl
<message name="doGoogleSearch">

<part name="key" type="xsd:string"/>
<part name="q" type="xsd:string"/>
<part name="start" type="xsd:int"/>
<part name="maxResults" type="xsd:int"/>
<part name="filter" type="xsd:boolean"/>
<part name="restrict" type="xsd:string"/>
<part name="safeSearch" type="xsd:boolean"/>
<part name="lr" type="xsd:string"/>
<part name="ie" type="xsd:string"/>
<part name="oe" type="xsd:string"/>

</message>
...

<service name="GoogleSearchService">
<port name="GoogleSearchPort" binding="typens:GoogleSearchBinding">
<soap:address location="http://api.google.com/search/beta2"/>
</port>

</service>

© SPI Dynamics 2007

Web Services Fuzzing - Tools

• Open Source
– OWASP WSFuzzer

• http://www.neurofuzz.com/modules/software/wsfuzzer.php

• Commercial
– SPI Dynamics WebInspect

© SPI Dynamics 2007

AJAX Fuzzing

© SPI Dynamics 2007

AJAX Fuzzing - Challenges

• AJAX frameworks may employ alternate data interchange
formats
– JSON - Atlas
– Serialized Java - Google Web Toolkit
– HTML
– XML

• Business logic dispersed between client and server side code

• Business logic dispersed among many client side pages and
script files

• Increased attack surface

© SPI Dynamics 2007

AJAX Fuzzing - Implementations

• Multiple frameworks
– Prototype (http://www.prototypejs.org/)
– Script.aculo.us
– Dojo (http://dojotoolkit.org/)
– ASP.Net AJAX (http://ajax.asp.net/)
– Etc.

• Multiple browser objects
– Internet Explorer

• IE6 - XMLHTTP ActiveX control
• IE7 – XMLHTTP native script object

– Firefox
• XMLHttpRequest object

© SPI Dynamics 2007

AJAX Fuzzing - Inputs

• Dynamic analysis (e.g. FireBug)
– Allows for targeted fuzzing
– No setup required

• Static analysis (e.g. spider/grep)
– Spider website and grep for XHR calls
– Challenging as logic for XHR is often spread among >1 web

page or JavaScript file
• Web page

– <script src=“ajax" type="text/javascript"></script>
– Ajax.Request()

• Script page

© SPI Dynamics 2007

How Not to Implement AJAX - BlinkList

© SPI Dynamics 2007

How Not to Implement AJAX - BlinkList

© SPI Dynamics 2007

How Not to Implement AJAX - BlinkList

BlinkList XMLHttpRequests

• Verbose SQL errors
– Multiple

• XSS

• Exposed functionality
– Web based email

• Directory browsing

© SPI Dynamics 2007

FUGGLE

FFuuggggllee T
M

Fuzzing

Using

Google

Gets

Low hanging fruit

Easily

© SPI Dynamics 2007

Fuggle RI.gov

Hackers steal credit card info from R.I.
Web site

Dibya Sarkar

Published on Jan. 27, 2006
A Russian hackers broke into a Rhode Island government Web site and
allegedly stole credit card data from individuals who have done business online
with state agencies.

The story was first reported by The Providence Journal this morning and comes
two days after state and local government officials released national surveys
indicating they need more cybersecurity guidance and help in strengthening
their systems.

© SPI Dynamics 2007

Identify

Target

Identify

Inputs

Generate

Fuzzed Data

Execute

Fuzzed Data

Monitor for

Exceptions

Determine

Exploitability

Fuggle Fuzzing Phases

© SPI Dynamics 2007

Fuggle vs. Google Hacking

Known vulnerabilitiesCustom vulnerabilities

Fixed signature based searches

e.g. intitle:index.of "parent
directory"

Flexible search terms

e.g. inurl:"id=10"

Identifying pages using vulnerable
3rd party apps or leaking
confidential information

Identifying targets for further testing

Focus on output

e.g. page content

Focus on input

e.g. URI parameters

FFuuggggllee

© SPI Dynamics 2007

Fuggle Prerequisites

• Vulnerabilities
– Input vectors must be indexed by Google and accessible via

search operators
Title
Displayed page content
URI
 Request/response headers
 Page source code

– Effectively limits using Fuggle to pages using GET method
• Input vectors indexed in URL

© SPI Dynamics 2007

Fuggle Threat

• How can Fuggle be abused?
• Indiscriminate web application hacking
• Vulnerability scanning for self propagating worms / web application

worms

© SPI Dynamics 2007

Fuggle SQL Injection – Identify Input

• Input
– User supplied values concatenated into

SQL queries

SELECT product from products WHERE id=10;

www.example.com?id=10

• Goal
– Identify pages with verbose SQL errors

© SPI Dynamics 2007

Fuggle SQL Injection – Identify Targets

• Search Term
– inurl:"id=10"

• Targets
– Retail stores

• E.g. Product catalog
– Informational sites

• E.g. News archive

• Search results
– Results 1 - 10 of about 2,010,000 for

inurl:"id=10". (0.05 seconds)

• Cleanse results
– Remove URLs w/out “id=10”
– Remove duplicate results form single domain

© SPI Dynamics 2007

Fuggle SQL Injection – Generate Data

• Goal
– Identify pages with verbose SQL

errors

• Fuzz data
– id=‘10"
– Blind SQL injection

• id=10 OR 1=1
– Comment remainder of query

• id=‘10--
– Encode query

• id=%2710

© SPI Dynamics 2007

Fuggle SQL Injection – Execute Data

• Submit queries

• Capture responses
– Raw response

• Headers
• HTML source code

– HTML Status codes

• Associate requests with
responses

• Archive for automated and
manual review

© SPI Dynamics 2007

Fuggle SQL Injection – Monitor Exceptions

© SPI Dynamics 2007

Fuggle SQL Injection - Exploitability

• Execute additional queries
– Confidentiality

• SELECT
– Integrity

• DROP
• INSERT
• DELETE

– System compromise
• Stored procedures
• Extended stored

procedures

© SPI Dynamics 2007

Fuggle SQL Injection - Results

11.3%Percentage of sample web sites potentially vulnerable to
SQL injection attacks

80Total number of verbose SQL errors

708Population after removal of failed requests

732Population after removal of duplicate servers

1,000Initial population of URLs

© SPI Dynamics 2007

Fuggle XSS – Identify Input

• Input
– User supplied values echoed back in

displayed web page

Welcome back <?php echo $_GET[“user"]; ?>

www.example.com?user=joe

• Goal
– Identify pages which display unfiltered user

input

© SPI Dynamics 2007

Fuggle XSS – Identify Targets

• Search Terms
– inurl:"search=xxx" intext:"search results for xxx"
– inurl:"query=xxx" intext:"search results for xxx"
– inurl:"q=xxx" intext:"search results for xxx"

• Targets
– Search pages

• Blogs
• Video sharing
• News

• Search results
– Typically < 1000
– Numerous duplicate sites

• Cleanse results
– Remove URLs w/out "search|query|q=xxx"
– Remove duplicate results form single domain

© SPI Dynamics 2007

Fuggle XSS – Generate Data

• Goal
– Identify pages echoing unfiltered user

input in responses

• Fuzz data
– Client side script

• JavaScript, VBScript, EMCA
Script, HTML, etc.

– Encoded data
• URL encoding
• Hexadecimal encoding
• Unicode encoding
• US-ASCII
• Etc.

© SPI Dynamics 2007

Fuggle XSS – Execute Data

• Fuzz Variable
– IMG tag

• Non existent page on local
web server

• Detection
– Allows implicit ‘phone home’

capability
– Log entry = vulnerable web page
– HTML likely to evade ineffective

input filters

© SPI Dynamics 2007

Fuggle XSS – Monitor Exceptions

#Software: Microsoft Internet Information Services 5.1

#Version: 1.0

#Date: 2007-01-31 00:57:34

#Fields: time c-ip cs-method cs-uri-stem sc-status

00:57:34 127.0.0.1 GET /xss-vulnerable.com 404

IIS Web Server Log File

• Vulnerable site dynamically concatenated into request
• Requested resource does not need to exist on local web

server
– 404 status code is just as good as 200

© SPI Dynamics 2007

Fuggle XSS – Exploitability

• Reflected XSS
– DOM based content spoofing in phishing

attacks
– Stealing session credentials and

confidential data

• Persistent XSS
– Web based worm propagation

• October 4, 2005 – MySpace Samy worm

© SPI Dynamics 2007

Fuggle XSS - Results

17.3%Percentage vulnerable

47Sites with confirmed XSS vulnerabilities

272Unique sites accessible at time of testing

288Unique sites identified by Google

© SPI Dynamics 2007

Fuggle Lessons Learned

• Vulnerable websites are everywhere

• Previously unknown vulnerabilities can easily be identified
through a combination of search engine queries and basic web
page requests

• Viable tactic for phishers and worms that do not discriminate
when selecting victims

• Google knows that you’re vulnerable. Do you?

© SPI Dynamics 2007

Fuzzing and the SDLC

Build QA ProductionDesignRequirementsPlanning

Application Security Monitoring

Fuzzing Tools

Developers QA Team Security Team

Training
&

Education

© SPI Dynamics 2007

The future of Fuzzing

• Tools
– Frameworks
– Integrated test environments
– Commercial tools

• People
– Wider audience
– Proactive fuzzing – the shift from offense to defense

© SPI Dynamics 2007

Any Questions?

Michael Sutton
Security Evangelist
SPI Dynamics
http://portal.spidynamics.com/blogs/msutton

