The Untold Tale of Database Communication Protocol Vulnerabilities

Amichai Shulman, CTO

BlackHat 2007 – Washington DC
Agenda

• A Brief History of Database Security Threats
• Introduction to Database Communication Protocols (and their problems)
• Detailed Walk Through of Vulnerabilities
• Mitigation Techniques
A Brief History of Database Security Threats

- Infrastructure Attacks
 - Targets generic network stack vulnerabilities or common services on a server
 - Unrelated to the role of the server as a DB server
 - Not DB vendor specific
 - Proactive mitigation using network FW
 - Reactive mitigation using IDS / IPS
A Brief History of Database Security Threats

- Privilege Abuse Using SQL Queries
 - Compromised credentials
 - Excessive privileges
 - Inherent to database servers
 - Not DB vendor specific
 - Proactive mitigation using internal access controls
A Brief History of Database Security

Threats

• SQL Level Vulnerabilities
 – Buffer overflow
 • xp_SetSQLSecurity, xp_sprintf, pwdencrypt (MS SQL)
 • Pwdencrypt (MS SQL)
 • CREATE DATABASE LINK (Oracle)
 – SQL Injection
 • driload.validate_stmt, dbms_metadata.get_ddl (Oracle)
 – Privilege elevation
 • OpenRowset (MS SQL)
 • Modify Data via Inline View (Oracle)

• Vendor Specific

• Proactive Mitigation
 – DB configuration
 – Access control

• Reactive Mitigation
 – Patching
A Brief History of Database Security Threats

- Database Communication Protocol Vulnerabilities
 - First peeks on 2000
 - A major surge during 2006
 - Oracle (~20)
 - DB2 (~10)
 - Informix (~10)
 - MS SQL (<5)
 - Database vendor specific
Database Communication Protocols

Introduction

Application

ODBC
JDBC
OCI
CLI

Driver

API

DB Communication Protocol

SQL*NET
DRDA
TDS

Transport Protocol

Raw TCP
IPX
Named Pipes

Database Server
Database Communication Protocols

Introduction

- SQL is standard however,
- No standard exists for the following tasks:
 - Creating client session
 - Conveying commands from client to server
 - Conveying data and status from server to client
 - Implementing cursor command and prepared statements
- Vendors are filling the gap with proprietary technology:
 - Messages
 - Sequences
 - Semantics
Database Communication Protocols

Introduction

<table>
<thead>
<tr>
<th>Database</th>
<th>Protocol Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle</td>
<td>SQL*NET (AKA Net8, Net9)</td>
</tr>
<tr>
<td>IBM</td>
<td>DRDA (replacement of DB2RA)</td>
</tr>
<tr>
<td>Sybase</td>
<td>TDS 5 (extending TDS 4.2)</td>
</tr>
<tr>
<td>MS SQL</td>
<td>TDS 7 & 8 (extending TDS 4.2)</td>
</tr>
</tbody>
</table>
Database Communication Protocols
Maximum Complexity

• Multiple layers
 – TDS: 2 layers (~10, ~100)
 – DRDA, SQL*NET: 3 layers
 – Sometimes there is redundancy between layers (size fields, offsets, termination tokens)
 – Each layer is handled independently
Database Communication Protocols
maximum complexity

- Microsoft TDS
- Hello Message
Database Communication Protocols
Maximum Complexity

• Long history of backwards compatibility
 – Oracle 8 through Oracle 10g
 – TDS 4.2 through TDS 9
 – TDS 5 duplicate set of commands

• Data representation
 – Try to bridge different client and server environments
 – Fixed for lower layer, negotiable for other layers
 (Endianess, String representation, etc.)
 – DRDA uses 8 different code pages for protocol messages
 – Oracle has 3 different data representations
 – Oracle eliminates multiple network transmissions of identical values
Database Communication Protocols
Minimum Scrutiny

- Vendors are (almost) exclusive producers of basic client software
 - Some exceptions like DataDirect’s drivers and FreeTDS implement subsets of the protocols
- Server side protocol implementation is not tested against spec but against client implementation
 - Driver developers are not always aware of the full capabilities of the protocol
- Probably few out-of-spec testing.
 - Especially for backwards compatible code
- Spec is not open for public review
 - DRDA is an exception
Database Communication Protocols
Bring in the Vulnerabilities!

• Analysis of protocols is required for network based database security gateways
• Simple analysis can be done using a network sniffer

DEMO
Database Communication Protocols
Bring in the Vulnerabilities!

- Vulnerability research of connection establishment can be done using simple tools like netcat
- Deeper analysis of the protocol and vulnerability research into other parts of it requires a different tool
 - Changing selectively parts of messages within an existing connection
 - Injecting messages into existing connection
 - Removing messages from a connection
- Introducing: TCPirate
Database Communication Protocols
TCPirate

• Interactive TCP Proxy
• Record messages in both directions
• Messages can be trapped
 – Inspect message
 – Make controlled changes to the message before letting it go
 – Replace the message with a message from a file
 – Drop the message
• Spontaneously inject messages into a connection

DEMO
Vulnerability Details
Classification

- Message Structure Tampering
- Field Size Tampering
- Field Content Manipulation
- Message Sequence Tampering
Vulnerability Details
Message Structure Tampering

• Message fields are explicitly declared (e.g. DRDA, Some Oracle Messages)
• Three main techniques
 – Removing fields from a message
 – Adding fields to a message or duplicating fields in a message
 – Combining fields in an unexpected manner
Vulnerability Details
Message Structure Tampering

- BID 19586, Denial of Service vulnerability patched by IBM
- Fields in DRDA messages are explicitly declared
- RDBNAM field (code 0x2110) can be omitted from connection request message
- Server becomes unstable upon connection
Vulnerability Details

Message Structure Tampering

- **Original Message**

<table>
<thead>
<tr>
<th>Hexadecimal Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 b4 d0 41 00 01 00 ae 10 41 00 0e 11 5e 84 82</td>
<td>Original Message</td>
</tr>
</tbody>
</table>
Vulnerability Details
Message Structure Tampering

- **Tampered Message**

```
00 b4 d0 41 00 01 00 ae 10 41 00 0e 11 5e 84 82
f2 82 97 4b 85 a7 85 40 40 40 40 40 40 40 40
40 40 f0 f5 c6 f8 f0 f5 f5 f4 f0 f0 e6 00 c5
00 c2 00 c3 00 d6 00 c8 00 d6 00 d9 00 e3 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 60 f0 f0
f0 f1 c1 d4 c9 c3 c8 c1 c9 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
00 c3 e3 d6 c4 c2 40 40 40 00 18 14 04 14 03 00 07
24 07 00 07 14 74 00 05 24 0f 00 07 14 40 00 07
00 0b 11 47 d8 c4 c2 f2 61 d5 e3 00 0d 11 6d c5
c4 e5 c9 c3 c5 60 c1 d4 00 0c 11 5a e2 d8 d3 f0
f8 f0 f1 f5 00 34 d0 01 00 02 00 2e 10 6d 00 06
11 a2 00 09 00 24 11 Dc 5c 17 36 09 Dd E8 92 88
F4 E3 79 B0 57 9d 05 36 E1 26 F6 Ce A9 90 E7 8d
86 09 E8 36 D0 95 E0 32
```
Vulnerability Details
Field Size Manipulation

- Field size is explicitly declared using another dedicated field
- Mostly used for buffer overflow attacks
 - The length indicator field is capable of expressing larger data sizes than actually supported by server
- Example 1:
 - BID 18428, Buffer overflow vulnerability in DB2 connection request
 - A field called MGRLVLLS is extended to include more than 400 bytes
 - Unauthenticated denial of service and possible execution of arbitrary code
 - Affects all platforms including OS/390!
Vulnerability Details
Field Size Manipulation

- Example 2:
 - MSDE, Hello message
 - Abuse redundancy of size information
 - Dump internal buffers
Vulnerability Details
Field Content Manipulation

• Worst type of vulnerabilities
• Example 1:
 – US CERT Vulnerability Note VU#871756
 – Oracle TNS protocol fails to properly validate authentication requests
 – One of the login messages contains an SQL query that is executed under the SYS security context
 – The query is presumable hard-coded in the driver software
 – Can be exploited by simple editing of client side DLL
 – Affects all Oracle versions from 8 to 10gR2

DEMO
Example 2:
- MS SQL Server trace evasion
- Driver does not allow for account name in login message to contain non-printable ASCII characters
- Construct a login message that includes a valid account name preceded by NULL character
- Authentication mechanism disregards the extra character
- Trace mechanism tries to process it
- Consequence: Invisible users

DEMO
Vulnerability Details

Field Content Manipulation

- Manipulate the sequence of messages within the connection in an unexpected manner
- Two example
 - Oracle
 - Informix
- Details cannot be disclosed as far as vulnerabilities are not patched
- Known effects
 - Unauthenticated access to server
 - Denial of service
Mitigation

• Internal server control are useless
 – They are the ones with the vulnerability

• Patching
 – Simply not fast enough

• Reactive mitigation through IPS / IDS
 – Some vulnerabilities can be addressed using signatures or Snort-like rules
Mitigation

• Proactive mitigation with Database Security Gateway
 – Network device aware of the database communication protocol
 – Parses the data stream
 – Alert on messages that do not conform with expected client behavior
 – “Expected Client Behavior” is defined through research of vendor supplied drivers.
Question & Answer
Thank You

Imperva Inc.

950 Tower Lane, Suite 1550
Foster City, CA 94404
Sales: (866) 926-4678

www.imperva.com