
Slide 1 of 34

Secure Processors for Embedded
Applications

Black Hat DC 2007
February 28, 2007

James D. Broesch
jbroesch@UCSD.edu

+1-858-964-6842

© James D. Broesch, 2007

Slide 2 of 34

Introduction
• Most modern security work is based on either protecting

or cracking either the communications network or the
vulnerabilities of the (generally commercial) OS on the
target system.

• This is not surprising since the majority of modern
systems make use of conventional processors running
standard operating systems and communicating over
standard channels such as Ethernet or WiFi.

• While much good work has been done in these areas, to
some extent any such effort must be seen as ultimately
a dead-end for obtaining a truly secure system.

Slide 3 of 34

Introduction (continued)
• The first and most obvious problem is that such efforts

do not physically protect the system.
• Numerous examples have made the news of stolen

laptops, stolen computers, etc. containing sensitive –
and even classified – information.

• To some extent, these problems can be mitigated by
good policies and procedures: using encrypted disc
partitions, VPNs, etc.

• However, these all assume that proper procedures are
followed by the users and that no latent vulnerabilities
are present (for example, easily broken passwords,
passwords stored in the clear, etc.)

Slide 4 of 34

Thus the motivation to use secure processors
is growing for a variety of reasons

• Protection of IP
 Algorithms
 Cores
 Configuration Files (FPGAs)

• Protection of design information (prevent reverse engineering)
• ITAR (International Traffic in Arms Regulations) requirements may

require secure processors to meet export restrictions
• Federal Information Processing Standards (FIPS / Common

Criteria) will generally be mandated for many kinds of commercial
transactions

• Protection of key data where simple storage encryption is not
adequate

• Prevent exploit vulnerabilities (rigged gamming machines,
vulnerable ATMs, etc.)

Slide 5 of 34

The (painful and partial) Solution
• In order to build a truly secure system it is necessary to

start from the ground up.
• This is why this talk addresses embedded systems; the

basic principles are applicable to both standard
computers systems and embedded systems. However
only a system designed from the first principles for
security is likely to truly achieve a high level of security.

• Like justice, there is no such thing as absolute security.
However, in this talk I will be discussing techniques that
both show you how to get very close to an absolutely
secure system and how to judge how vulnerable your
system may be.

Slide 6 of 34

First Principles
• Start with secure silicon. This means chips from a trusted fab. No

“back-doors”, no “un-documented” features, no “reserved for factory
test.”

• Write your own kernels and applications in a secure (two person
check) environment.

• Or better yet do not use conventional programming techniques.
Directly implement your functions in hardware. This still means
using a secure (two person check) design environment.

• Limit access to all design information.
• Secure (encrypt) all software and secure (physically protect) all

hardware.
• Have a strong and reliable key management system in place.

Slide 7 of 34

Threats
• Reverse Engineering; unauthorized copying of the

design
• Exposing the operation of critical technologies
• Developing counter measures to the mission of the

system
• Spoofing of the system (Information Assurance)

Slide 8 of 34

Threat Vectors
• Inspection

Module penetration
• X-Rays
• Thermal
• Sonic

Circuit Layout
Power Analysis
Deliding Devices

• Power Analysis
• Thermal Analysis

Slide 9 of 34

Practical Considerations
• Few programs can afford the time or money to build a

secure system from first principles.
• There are usually practical constraints:

Mobile devices make physical security more difficult if
not impossible.

The design complexity of modern systems often
makes it impractical to use fully custom hardware
and / or software.

Most systems must conform to commercial standards
such as TCP/IP, etc.

Slide 10 of 34

Security Evaluations

Cost and /

or Schedule

Level of Security

The usual exponential curves apply to security as to
most other engineering activities:

•There is a point of diminishing returns.
•There is an exponential cost increase for higher
levels of security.

Cost and / or Schedule

Level of

Security

Slide 11 of 34

Security Evaluations (continued)
• So, the optimal system design becomes a tricky tradeoff

between technical feasibility, cost, schedule, level of
effort, and required degree of practical security.

• Key questions / motivations:
Simple paranoia
 IP / design protection
Protection of sensitive (i.e. trade secrets, business

plans, etc.) data.
Protection legally liable data (i.e. medical records

(HIPA), financial transactions (ATMs, SOX), etc.)
Classified information (which, needless to say, we

will not be discussing.)

Slide 12 of 34

So what exactly is a Secure Processor?
• Like may things in life, a secure processor means different things to

different people.
• The key characteristics will generally include, but are not necessarily

limited to:
 Some type of anti-tamper (AT) / intrusion detection

• This may include forensic enhancements
• And it may include information assurance (IA) enhancements.

 The ability to execute secured (encrypted) programs
 The ability to protect data from unauthorized access
 The ability to protect code from unauthorized access
 A secure communications channel (secured I/O)
 Some type of isolation from non-secure I/O channels
 Security may also mean high-reliability: is a processor secure if it is

susceptible to routine failures?
 It may mean high performance. Encryption, authentication, etc. can

take up a significant amount of processing power.
 Accelerators for encryptions may be available.

Slide 13 of 34

First, lets look at a
conventional Harvard Processor

Aritmetic

and

Logic

Unit

Control

Unit

Program

Address

Register

Data

Store

(RAM)

Data

Address

Register

Program

Store

(ROM)

Instruction Path

Data Path

Input /

Output

Channel

Outside

World

Control /

Status

Debug

Port

(JTAG,

etc.)

Slide 14 of 34

Now, let’s see what a
secure version might look like:

Aritmetic

and

Logic

Unit

Control

Unit

Program

Address

Register

Data

Store

(RAM)

(Encrypted)

Data

Address

Register

Program

Store

(ROM)

(Encyrpted)

Instruction Path

Data Path

Input /

Output

Channel

(Secure)

Outside

World

Control /

Status

Debug

Port

(JTAG , etc .)

Encryptor

Encryptor /

Decryptor

Encryptor

Decryptor

Input /

Output

Channel

(Clear)

Outside

World

Isolator

Block

Key

Management

Keys to

Encryptors /

Decryptors

Secure Processor Conventional Components

External

Zeroize

Slide 15 of 34

Architectural
features of the Secure Processor

• First, there is a new section for key management
Keys may be externally loadable or “hardwired” in.
Externally loadable keys can generally be “zeorized”

(erased). Often this can be done internally or
externally.

Hardwired keys are generally not visible under any
(reasonable) conditions to the outside world. Thus
they are in some sense “more secure.”

• Intrusion detection / prevention is present. Keys may be
zeroized, memory erased, or other responses to an
attempt to penetrate the system.

Slide 16 of 34

Architectural features
of the Secure Processor (continued)

• Note the “double encryption”
The data is encrypted before it is stored in external

memory.
Similarly, the address in also encrypted.
Assuming each processor is keyed individually,

breaking the encryption on the data alone will not
compromise other systems: the data will still be
“scrambled”.

• For our example system, the program is also double
encrypted. In this case, it is assumed that an external
PROM’s instructions and constants are encrypted. This
information is then stored in the PROM using encrypted
addresses.

Slide 17 of 34

Architectural features
of the Secure Processor (continued)

• Note that there is both a secure I/O channel and a non-
secure (clear) I/O channel.
The strength of the security of the Secure Processor

is directly dependent upon how well these two
channels are isolated.

The easiest place to attack a secure processor is
generally at this point of isolation!

 If this isolation can be penetrated all data transaction
can be monitored “in the clear”

There will be some protection against attack by power
analysis (SPA, DPA), Differential Electromagnetic
Analysis (DEMA), etc.

Slide 18 of 34

Classes of Secure Processors
• Depending upon the requirement, there are a variety of Secure

processor options.
• The strongest, though most costly and difficult, is a full custom

ASIC. Though it should be remembered that unless the process
described earlier are followed, a poorly executed custom ASIC may
be less secure than a standard product.

• Security enabled designs using conventional processors.
• Legacy microcontrollers / microprocessor that have been modified

for security.
• Programmable architecture devices designed for security.
• Systems on a Chip (SoC)

 These can be hard systems (fixed configuration)
 Or they may be Field Programmable Gate Arrays with security

features.
• Modern RISC processors or cores designed for use secured

systems.

Slide 19 of 34

Simple Examples
• The simplest is a conventional microcontroller that simply has some

built in security features. For example, the Rabbit 4000 [1]:
 This is not really a secure processor in any true sense of the

word. However, it has hardware and software that optimize its 8-
bit microcontroller architecture for the 32 bit operations often
required for encryption

• Another example is the Microchips’ dsPIC30F
 Again, not truly a secure processor. However, libraries are

available to make the dsPIC30F’s hardware usable for
encryption and decryption.

• Although not truly secure processors, these devices can be
enhanced with devices such as Dallas Semiconductor’s DS3600
Secure Supervisor.
 Provides tamper detection
 Provides secure key storage

Slide 20 of 34

von Neumann System Secured with a
Monitor and Physical Security

Secure

Supervisor
Conventional

Processor

RAM PROM Peripherals Isolation

Environmental

Monitoring

Address / Control

Data

I/O

Mechanically Secure Module

Slide 21 of 34

Legacy Processors that have been secured
• As general rule, conventional processors that have been “secured”

are based on legacy processor cores that are then wrapped in a
security shell.

• These are true secure processors.
• They are generally targeted at FIPS / Common Criteria applications.
• Atmel’s AT90SC12836RCFT for example is based on the AVR

8/16 bit processor. The processor is rated at 1 MIPS
• Maxim’s DS5250 is based on the 8051 Microcontroller.

Performance is 4 clock cycles per instruction with a maximum 25
MHZ clock rate.

• These processors can be combined with high performance non
secure processors to form a (reasonably) secure embedded
processor system [2]

Slide 22 of 34

von Neumann System Secured with
Secure Coprocessor and Physical Security

Secure

Coprocessor
Conventional

Processor

RAM PROM Peripherals Isolation

Environmental

Monitoring

Address / Control

Data

I/O

Mechanically Secure Module

Slide 23 of 34

Trades of Securing Conventional Systems
• Advantages:

 The system can be designed with conventional processors,
components, and methodologies.

 This provides the maximum in flexibility of implementation
options.

• Disadvantages:
 Requires careful mechanical design of the module.
 N+1 Problem: given enough units, the attacker will eventually

find a way into the system.
 Once the hacker is in, the system is completely exposed.
 This last statement can be challenged: the secured monitor or

secured processor may well still be secure. However, the
attacker will have complete visibility of all conventional
processor traffic. Therefore, they will probably be able to obtain
anything of interest they want (depending upon the application.)

Slide 24 of 34

System on a Chip (SoC)
• Modern Systems on a Chip offer significant opportunities for

implementing Secured Embedded Systems.
• All components are enclosed on a single die. This alone may be

enough meet the system requirements.
• Custom or semi-custom security enhancements may be added.

 SoC Basically fall into four categories
• Special purpose chips that have degree of programmability
• ASICs designed with system blocks
• FPGAs
• Certain Programmable Processor Arrays (Cypress’s PSoC

for example)
 These are not necessarily secure devices, though as we will see

some can be.

Slide 25 of 34

System On a Chip ASIC

RAM PROM
Peripheral

Cores Isolation

Address / Control

Data

I /O

Processor
Core

Key Storage /
Management

Zeroize

Slide 26 of 34

FPGA SoC Architecture

Soft Core /
Hard Core

Processor

Blockc
RAM

Isolation

Address / Control

Data

I/O

FPGA SoC

Encrypted

PROM

Key Storage /

Management

Zeroize

Load
Control

Peripheral
Cores

FPGA
Fabric

Isolation I/O

Slide 27 of 34

SoC Characteristics
• All key parts of the system are on a single die and therefore in a

single, protectable, package.
• If based on FPGAs, reconfigurability can be used for both updating

the system and improving graceful degradation while maintaining a
secure processor.

• High performance systems are realizable.
• Depending upon the SoC chosen, and the development

methodology, development cost will be moderately higher to
significantly higher than for designing with convention, non-secure
processors.

• Key management is provided on the device. However often, as in
the Virtex IV, the key management hardware is only available to the
load module. Other key management is up to the user!

Slide 28 of 34

FPGAs as High Performance Secure Processors

“When used in conjunction with the security monitor,
NSA found the V4 to be a robust architecture capable of
processing classified information and maintaining a very
high level of security.” [3]

Slide 29 of 34

First Steps
• There are several initial factors to keep in mind when designing a

secure processor based on FPGAs:
 Select a device that has security features. Either an encrypted

PROM for volatile devices or secure version of non-volatile
devices.

 Select the key storage method: Static or Dynamic?
• Static keys allow the device to be programmed prior to

board installation.
• Static key are rarely (if ever) erasable.
• Volatile keys are (usually) more easily erased.
• Volatile keys theoretically reduce reliability due to the need

for either continuous power or an external battery backup.
 Perform the design using a secure methodology. For example,

when encrypting the bit stream for a Virtex IV using the ISE 8
tools the encryption key is copied into the design reports. Thus if
one is not careful, the key could be released as part of the
documentation package.

Slide 30 of 34

Design Methodology
Design the application for security. This can be

trickier than it sounds.
• Isolation: Internal visibility due to I/O pins or cross

coupling.
• Controllable debug access
• Device architecture
• Design software: the design software must

support these features (this usually requires
additional tool support.)

• Power supplies
• Shielding
• Board layout

Slide 31 of 34

Design the Application for Security
• Are there security monitors available for the design?

What requirements do these place on the design?
How secure is the IP?

• If the design is going to use other IP (usually the case
for modern designs) do they expose the system to
security threats?

• Consider security requirements from the start, and as
the design progress:
SPA/DPA: Board layout, filters, operational

sceanarions, etc.
DEMA: Board lay, enclosures, etc.
 Isolation between data streams
 Isolation between execution Streams

Slide 32 of 34

Design the Application for Security
(continued)

• Make sure the tools don’t “optimize” out these efforts!
• If external RAM or PROMs are required for code

execution, data contents, storage, etc, encryption can
be added to the FPGA fabric just as discussed in the
section on secure processor architecutres.

• However, keep in mind that this may affect things like
DMA operations into Block Ram, Processor Wait States,
cacheing, etc.

Slide 33 of 34

References
[1] Cryptography for Engineers Who Couldn’t Care Less,

Jim Turley, Microprocessor Analyst and Editor-in-Chief,
Embedded Systems Programming. Rabbit
Semiconductor White Paper W106.

[2] Increasing System Security by Using the DS5250 as a
Secure Coprocessor, Dallas Semiconductor’s
Application Note 3294

[3] FPGA-BASED SINGLE CHIP CRYPTOGRAPHIC
SOLUTION, Mark McLean, National Security Agency,
Jason Moore Xilinx Corporation, MILCOM 2006 paper
and presentation.

Slide 34 of 34

Acronyms
ASIC Application Specific Integrated Circuit
ASSP Application-Specific Standard Product
AT Anti-Tamper
DEMA Differential Electromagnetic Analysis
DMA Direct Memory Access
DPA Differential Power Analysis
EFP Environmental Failure Protection
EMA Electromagnetic Attack
HIPA The Health Information Protection Act
IA Information Assurance
IP Intellectual Property
ITAR International Traffic in Arms Regulation
NRE Non-Recurring Engineering
PROM Programmable Read Only Memory
RAM Random Access Memory
RE Reverse (Recurring) Engineering
SoC System on a Chip
SOX Sarbanes-Oxley Act of 2002, Public Company Accounting

Reform and Investor Protection Act of 2002
SPA Single (Simple) Power Analysis

