
Attacking Obfuscated Code
with IDA Pro

Chris Eagle



10/26/04

2

Outline

• Introduction
• Operation

• Demos

• Summary



10/26/04

3

First Order Of Business

• MOVE UP AND IN!
– There is plenty of room up front

– I can't increase the font size in IdaPro



10/26/04

4

Background

• IDA Pro
– Interactive Disassembler Professional
– http://www.datarescue.com/idabase

• Premier disassembly tool for reverse
engineers
– Handles many families of assembly language

• Runs on Windows
– Linux console version newly available.



10/26/04

5

What?

• ida-x86emu is a plugin for IDA Pro that
allows for emulated execution of x86
instruction set

• Written in C++
– Currently packaged as VC++ 6.0 project

• Available here:
– http://sourceforge.net/projects/ida-x86emu



10/26/04

6

Why?

• Hand tracing assembly language is difficult
to do in large or complex programs

• Anti-reverse engineering techniques attempt
to obfuscate code paths

• Allows automated unpacking/decrypting of
"protected" binaries
– UPX, burneye, shiva, tElock, ASPack, …



10/26/04

7

Primary Motivation

• Getting at protected executables
– Most viruses/worms are protected in some way

– Often UPX, tElock, ASPack

• Challenge for static reverse engineering is
getting past the protection
– ida-x86emu allows you to "run" through the

decryption routine within IDA Pro



10/26/04

8

Outline

• Introduction

• Operation
• Demos

• Summary



10/26/04

9

IDA Pro

• Load the binary of interest

• IDA builds a database to characterize each
byte of the binary

• Performs detailed analysis of code
– Recognizes function boundaries and library

calls

– Recognizes data types for known library calls



10/26/04

10

Obfuscated Code

• Challenging for IDA

• Usually only get sensible output for entry
point function

• Protected program appears as data rather
than code because it is obfuscated/encrypted

• Jumps into middle of instructions confuse
flow analysis



10/26/04

11

The Plugin

• Two pieces
– User interface

• Windows-specific gui code

• Handles dialog boxes

– x86 emulator
• Platform independent (mostly!)

• Executes a single instruction at a time
– Reads from IDA database or user-supplied memory block



10/26/04

12

Console



10/26/04

13

Using It

• Alt-F8 launches control console

• eip initialized to cursor location
– (1st time only)

• Step and go
– The plugin tells IDA to reorganize its code

display based on ACTUAL code paths

– Defeats jump into the middle of an instruction
type obfuscation



10/26/04

14

Features

• Run to Cursor
– No breakpoints yet

• Plugin supplies its own stack
– Stack push places arguments on the stack

– Useful if you want to setup a function call

• Plugin supplies its own heap
– Redirect library functions to plugin provided

equivalents



10/26/04

15

Limitations

• Slow
– Because of emulated execution and IDA

interactions

• Can't follow calls into dynamically linked
functions

• Can't follow system calls in statically linked
functions



10/26/04

16

Emulator Memory

• Code and static data must be fetched from
IDA database

• Other references must be directed to either
stack or heap
– Every memory reference checked

– Could easily add Valgrind type memory
analysis



10/26/04

17

Memory Layout

• Emulation options allow you to specify
memory layout



10/26/04

18

Emulated Stack

• Used by all stack operations in the program
– Stack contents displayed in main emulation

window

– Auto scrolls to most recent reference

• Allows pushing data onto stack outside of
program control
– Useful to setup and run individual functions



10/26/04

19

Emulated Stack

Pushed right to left per
C calling conventions



10/26/04

20

Emulated Heap

• Simple linked list memory allocator

• Does not emulate any specific allocation
algorithm
– Specifically, no in-band control info

• Won't mimic heap overflow problems

• Can detect access outside allocated blocks



10/26/04

21

Function Hooking
• Two methods

– Manual invocation of emulator equivalent
function

• Result in eax, actual call statement in code must be
"skipped"

– Automatic, hooked invocation of emulator
equivalent function

• call statement redirected to emulated library
function



10/26/04

22

Manual Function Hooking

• Required parameters, if any, taken from
stack

• Result into eax

• No change to eip



10/26/04

23

Automatic Function Hooking

• Step through hooked call statement causes
emulator equivalent to be executed instead



10/26/04

24

Automatic Function Hooking

• Functions available for hooking
– Windows

• VirtualAlloc, VirtualFree

• GetProcAddress

• GetModuleHandle, LoadLibrary

– Standard library
• malloc, calloc, realloc, free



10/26/04

25

Windows Structured Exception
Handling (SEH)

• Work in progress

• tElock for example uses SEH as an anti-RE
technique

• Point FS register at dummy Thread
Environment Block (TEB)

• Only a few recognized exceptions
– Divide by zero, INT3, single step, Debug

registers



10/26/04

26

SEH (continued)

• Emulated program must setup an exception
handler
– Emulator does not offer a default exception

handler

• Emulator creates SEH data structures,
pushes them on the stack and jumps to user
defined exception handler



10/26/04

27

Outline

• Introduction

• Operation

• Demos
• Summary



10/26/04

28

UPX Demo

• One of the most common obfuscators

• Reversible using UPX itself

• UPX corruptors exist that break UPX's
reversing capability

• Simple unpacking loop, no tricks

• No problem for the plugin

• Doesn't rebuild import table yet



10/26/04

29

ASPack Demo

• ASPack requires
– LoadLibrary, GetProcAddress

• Used to retrieve VirtualAlloc and VirtualFree

• Currently emulator mimics VirtualAlloc
and VirtualFree

• Hook LoadLibrary and GetProcAddress
calls



10/26/04

30

ASPack Demo

• Hooked LoadLibrary reports to message window

• Hooked GetProcAddress returns unique id for
each function lookup

• Automatic hooking by GetProcAddress will create
hooks for VirtualAlloc and VirtualFree
– Could use returned id to hook VirtualAlloc and

VirtualFree calls



10/26/04

31

tElock Demo

• Sets up Windows exception handlers, then
generates exceptions to jump into handlers

• Grab some memory for TEB and point FS
register at it
– Execute a malloc or manually push a bunch of

data

• SEH only enabled when a Windows PE is
loaded



10/26/04

32

Burneye Demo

• Early ELF protector by Team TESO

• Embeds the entire protected ELF binary
within a protective unwrapper
– Offers layers of obfuscation/encryption

• Once decrypted, the protected binary can be
dumped out of the IDA database
– Plugin provides a "dump block to file"

capability



10/26/04

33

Shiva Demo

• Shiva is a binary protector
– Similar goals to Burneye

• Multilevel encryption protects binary

• Polymorphic stage 1 decryptor

• Embedded key generation functions for last
stage decryption



10/26/04

34



10/26/04

35

Shiva Key Recovery

• Shiva contains 5 different types of
encrypted blocks

• Each block gets its own key
– Blocks of same type share the same key

• In this case we need to generate 5 keys in
order to decrypt all of the types of blocks



10/26/04

36

Key Obfuscation

• Shiva contains a key generation function for
each type of crypt block

• Block decryption sequence
– Identify block type (0-IV)

– Call appropriate key generation function

– Decrypt block

– Clear the key



10/26/04

37

Key Generation

• Functions are obfuscated
– Similar to layer 1 decrypt

– Differ from one binary to the next

– Resistant to script-based recovery

• But
– They are easy to locate

– A table points to the start of each function



10/26/04

38

Key Recovery

• The plugin can be used to run the functions
and collect the keys!

• Setup desired parameters on the stack
– Pointer parameters need to point to valid

memory blocks
• Grab memory on stack

• Manually invoke malloc

• Point eip at the function and step



10/26/04

39

Using the Keys

• With 5 keys in hand it is possible to decrypt
all of the crypt blocks

• The plugin can be used to invoke Shiva's
decryption function
– Setup the stack

• Pointer to the block

• Pointer to the key

– Step through the decryption function



10/26/04

40

Outline

• Introduction

• Operation

• Demos

• Summary



10/26/04

41

To Do

• Breakpoints

• More library calls

• Better memory displays

• Memory use reporting

• Improved exception handling



10/26/04

42

Summary

• Acts as something of a "universal"
decryption script for protected binaries

• Dramatically reduces time to reverse
protected binaries

• Emulator code can be used independently of
gui code to create automated unwrappers
– Combine with ELF or PE parser

• Suggestions welcome



10/26/04

43

Questions?

• Thanks for coming

• Contact info:
– Chris Eagle

–



10/26/04

44

References

• Armouring the ELF: Binary encryption on the UNIX
platform, grugq & scut,
http://www.phrack.org/phrack/58/p58-0x05

• Shiva: Advances in ELF Runtime Binary Encryption,
Clowes & Mehta, Black Hat USA 2003,
http://www.blackhat.com/presentations/bh-usa-03/bh-us-
03-mehta/bh-us-03-mehta.pdf

• Strike/Counter Strike: Reverse Engineering Shiva, Eagle,
Black Hat Federal 2003,
http://www.blackhat.com/presentations/bh-federal-03/bh-
federal-03-eagle/bh-fed-03-eagle.pdf



10/26/04

45

References

• Shiva-0.96, Clowes & Mehta,
http://www.blackhat.com/presentations/bh-usa-03/bh-us-
03-mehta/bh-us-03-shiva-0.96.tar

• Burneye-1.0.1, scut, http://teso.scene.at/releases/burneye-
1.0.1-src.tar.bz2

• IDA Pro, Data Rescue,
http://www.datarescue.com/idabase/

• The Ultimate Packer for eXecutables
http://upx.sourceforge.net/


