
A Security Microcosm
Attacking and Defending Shiva

Shiva written by Neel Mehta and Shaun
Clowes

Presented by Shaun Clowes

shaun@securereality.com.au

What is Shiva?

Shiva is an executable encryptor
– Encrypted executables run exactly as

normal but are encrypted/obfuscated to
make them much harder to reverse
engineer or disassemble

Resistant to analysis and modification

Shiva works on Linux executables (in
the ELF format)

ELF

Executable and Linkable Format

Used on virtually all modern Unix
platforms

Very descriptive and flexible format
– Good for debuggers, compilers

– As good for reverse engineers, executable
patching and modification

The Field

Executable encryption has been around
for a long time
– Since the late ’80s

Largely confined to the MS-DOS and
Windows world
– There are quite a number of commercial

encryptors for windows

The Field

Only recently been any work in the Unix
field:
– Burneye by Scut (2001)

– ELFcrypt by JunkCode

– UPX now runs on Linux

Our Goal With Shiva

To provoke new research and
development in, and wider
understanding of:
– Reverse Engineering

– Binary manipulation

Advancements

Shiva brings many techniques from the
Windows world to the Unix world

Shiva also introduces some new
techniques

Security Implications

The Good Guys
– Prevent trivial reverse engineering of

algorithms
• Make protection technologies harder to reverse

engineer and attack

– Protect setuid programs (with passwords)

– Hide sensitive data/code in programs

Security Implications

The Bad Guys
– Make Malware harder to reverse engineer

Neutral
– New research and techniques

Shiva as a Microcosm

Shiva is a protection technology
– It protects a binary image from analysis or

modification

– Conceptually like any other protection
technology, e.g a firewall, authentication
scheme

Attackers probe Shiva and it’s output
executables to find weaknesses

A Hard Place

But Shiva is completely exposed:
– Firewalls need to be probed blind

– Shiva runs in an environment that can be
completely controlled by an attacker

• Right down to operating system behaviour

– Even worse, we’re telling everyone the
details

A Small Place

While Shiva is complex, it is still much
smaller than most software
– It needs to be

Makes a smaller target
– Much easier to reverse engineer and find

weak spots

The Encryptor’s Dilemma

 To be able to execute, a program’s code
must eventually be decrypted

An Arms Race

Thus binary encryption is fundamentally
a race between developers and reverse
engineers

The encryptors cannot win in the end
– Just make life hard for the determined and

skilled attacker

– Novices will be discouraged and look
elsewhere.

Encryption Keys

If the encrypted executable has access
to the encryption keys for the image:
– By definition a solid attack must be able to

retrieve those keys and decrypt the
program

To reiterate, binary encryption can only
slow a determined attacker

Standard Attacks

A good encryptor will try to deter
standard attacks:
– strace – System Call Tracing
– ltrace – Library Call Tracing
– fenris – Execution Path Tracing
– gdb – Application Level Debugging
– /proc – Memory Dumping
– strings – Don’t Ask

 Deterring Standard Attacks

strings
– Encrypting the binary image in any manner

will scramble the strings

 Deterring Standard Attacks

ltrace, strace, fenris and gdb
– These tools are all based around the

ptrace() debugging API

– Making that API ineffective against
encrypted binaries is a big step towards
making them difficult to attack

 Deterring Standard Attacks

/proc memory dumping
– Based on the idea that the memory image

of the running process must contain the
unencrypted executable

– A logical fallacy

A Layered Approach

Static analysis is significantly harder if
the executable is encrypted on more
than one level

The layers act like an onion skin

The attacker must strip each layer of the
onion before beginning work on the next
level

 (Un) Predictable Behavior

Efforts to make encryptor behavior differ
from one executable to another are
worthwhile

The less generic the methodology, the
harder it is to create a generic
unwrapper

Shiva 0.97

Currently encrypts dynamic or static
Linux ELF executables

Does not handle shared libraries (yet)

Implements defences for all the attacks
discussed so far

Encryptor / Decryptor

Development of an ELF encryptor is
really two separate programs

Symmetrical operation

Encryptor

Normal executable, which performs the
encryption process, wrapping the target
executable

Decryptor

Statically-linked executable, which
performs decryption and handles
runtime processing

Embedded within the encrypted
executable

Self contained
– Cannot link with libc etc.

Dual-process Model (Evil Clone)

Slave process (main executable thread)
creates a controller process (the clone)

Inter-ptrace (functional and anti-debug)

x86 Assembly Byte-Code
Generation

Allows for the generation of x86
assembly byte-code from within C (a
basic assembler)

Pseudo-random code generation,
pseudo-random functionality

Encryption Layers – Layer 1

Obfuscated

Obfuscation Layer

Initial Obfuscation Layer

Intended to be simple, to evade simple
static analysis

Somewhat random, generated
completely by in-line ASM byte-code
generation

Encryption Layers – Layer 2

Obfuscation Layer

AES Encrypted

Password Layer

Password Layer

Optional

Wrap entire executable with 128-bit
AES encryption

Key is SHA1 password hash, only as
strong as the password

Encryption Layers – Layer 3

Obfuscation Layer

Crypt Blocks

Crypt Block Layer

Password Layer

Crypt Blocks

Two important types – immediate map,
map on-demand
Controller process handles map on-
demand blocks
Random unmap
– Only small portion of executable decrypted

at any time

Instruction length parsing – necessary
to create map on-demand blocks

Crypt Block Mapping

Decrypted Block

Decrypted Block

Decrypted Block

Fault

Crypt Block Mapping

Decrypted Block

Decrypted Block

Decrypted Block

Cleared Block

Crypt Block Encryption

Block content encrypted with strong
algorithm
– Guess

Code to generate keys made pseudo-
randomly on the fly (asm byte-code)
– Keys are never stored in plain text

Tries to bind itself to a specific location
in memory (and other memory context)

Dynamically Linked ELF’s

Decryptor interacts with system’s
dynamic linker

Decryptor must map dynamic linker
itself, and then regain control after linker
is done

Anti-debugging/disassembly

Inherent anti-debugging provided by
dual-ptrace – link verified

Catch tracing:
– Check eflags

– Check /proc/self/stat

Anti-debugging/disassembly

Timing and SIGTRAP

Simple SIGTRAP catch

JMP into instructions – common anti-
disassembly trick

Problems Encountered, Solutions

Clone, ptrace, and signals

Fork processing

Exec processing

Life without libc
– Simple implementations of malloc etc

Attacks Against Shiva

We hoped Shiva would be defeated
quickly
– Turned out to be about three weeks before

the first attack succeeded (A non public
attack)

We’re now aware of three successful
attacks against the previously released
versions of Shiva

The First Attack

1. Allow the encrypted executable to
execute but stop it after the first layer
has executed (using ptrace)

2. Read the key routine locator block (at
known location)

3. Execute the key routines in process

4. Use the keys to decrypt the blocks in
memory

Exploited Weaknesses

Reverse engineering showed that a lot
of useful information was at fixed
locations

The first layer is weak

The key routines are tightly coupled to
the process image but not the control
flow

The Second Attack

Not sure of many of the details

Involved a complete reverse
engineering of the shiva loader
– Including its libc

Shiva 0.96

Released at BlackHat USA 2002

Added code emulation functionality

Requires significant code analysis.
– Instruction by instruction processing

– Function recognition, code flow analysis

– Requires a fairly well designed and
implemented framework

Instruction Emulation

Easily accomplished via manipulating
ptrace register structures

Virtually every instruction can be
emulated if its operation is understood

The Third Attack

Executed by Chris Eagle

Presented at BlackHat Federal 2003

A novel hybrid static analysis approach
– Emulating code execution via a plugin to

IDA Pro

– Can remove a lot of the tedious aspects of
unwrapping protected code

– Uber cool

The Third Attack

1. Load ELF program data into a “virtual”
environment

2. Emulate the execution of the first layer

3. Find the key headers and emulate
them to retrieve the keys

4. Decrypt the blocks

5. Find the code emulation blocks and
reapply them

Exploited Weaknesses

Predictable locations

The first layer is weak

We certainly didn’t predict emulators

Improving Shiva

Remove some of the predictability

Make it less of a sitting target

Unwrappers resemble exploits
– They’re often fragile and dependent on

hardcoded locations and values

Scrambling the Path

For the encryptor to be able to
randomize the loader it needs to store
meta data
– This is a weakness since a complete

reverse of the encryptor would yield the
meta data form

– The meta data would help the attacker
generate generic attacks on known
invariant bits of the loader

Software as a Service

This release of Shiva is now also a
service

Once a week a new version of Shiva is
automatically uploaded to
www.securereality.com.au/projects/shiva

The loader is automatically post
processed to make it less predictable

Morphing Code

The current randomization engine is
very simplistic, though it does remove
predictable addresses entirely
– Working on a full code flow analysis

version

The encryptor does perform some
simple modifications of the loader too

Development Pain

Standard development approaches are
anathema to an encryptor
– Since they allow the reverse engineer to

spot design patterns

Makes developing Shiva painful
– Trying to code in an undesigned fashion

Current Limitations

Can’t handle vfork(), threads

Can’t encrypt static executables that call
fork()

On Linux, exec() fails if the calling
process tries to exec a setuid program

Section Headers

Concentrating on deterring attackers ☺

Shiva in Action

Demo

End of Presentation

Thanks for listening

Questions?

