D

A Security Microcosm
Attacklng and Defending Shiva

Sﬁhiva written by Neel Mehta and Shaun

s Clowes

L Presented by Shaun Clowes

17 == shaun@securereality.com.au

D

make them much harder to reverse
englneer or disassemble

1*5: Re3|stant to analysis and modification
‘&c Shiva works on Linux executables (in

'CL. ELF

‘&c Used on virtually all modern Unix
w1 platforms

Very descriptive and erX|bIe format

. bs As good for reverse engineers, executable
patchlng and modification

The Field

Executable encryption has been around

'.'"_fora long time
—Since the late "80s

. .—There are quite a number of commercial

"+ ~ELFerypt by JunkCode

¥ = UPX now runs on Linux

understandlng of
heg -+ Reverse Englneerlng

D

e ™ » Make protection technologies harder to reverse
I S ;i*f . engineer and attack

— Shlva runs in an environment that can be
g © ..;___;;;_ completely controlled by an attacker

--------- nght down to operatlng system behaviour

"'+ _~smaller than most software

Nakes a smaller target

—I\/Iuch easier to reverse engineer and find
weak spots

To be able to execute, a program’s code
- must eventually be decrypted

ol Novmes will be discouraged and look

";elsewhere

D

:_— By definition a solid attack must be able to
" retrieve those keys and decrypt the
""" program

To reiterate, binary encryption can only
slow a determined attacker

Standard Attacks

‘&c A good encryptor will try to deter

e Strace System CaII Tracing
L - Itrace lerary Call Tracmg

Ioglcal fallacy

‘2”"” before beginning work on the next
:;.iif Ievel

;vg.: DQes not handle shared libraries (yet)
*fe;f"-:?i;f';;f't;flamplements defences for all the attacks

Encryptor

I\|0"mal executable, which performs the
encryption process, wrapping the target

executable

S’elf contained
i Cannot link with libc etc.

x86 Assembly Byte-Code
Generation

>

- Encryption Layers — Layer 1

Obfuscation Layer

Obfuscated

~Initial Obfuscation Layer

| static analysis

‘- % Somewhat random, generated

Cmpletely by in-line ASM byte-code

>

- Encryption Layers — Layer 2

Obfuscation Layer

Password Layer

AES Encrypted

Password Layer

;rap entire executable with 128-bit
= AES encryption

Key Is SHA1 password hash, only as

Encryption Layers — Layer 3

Obfuscation Layer

Password Layer

Crypt Block Layer

Crypt Blocks

‘&c Two |mporta nt types — immediate map,

¥ Cantroller process handles map on-
Y demand blocks

i o iny small portion of executable decrypted
----- at any t|me

f;':f' i‘fﬂStl’UCthﬂ length parsing — necessary

o tc create map on-demand blocks

" Crypt Block Mapping

Decrypted Block

Decrypted Block

~ Fault
- o _ Y

RN e

Decrypted Block

- Crypt Block Mapping

Decrypted Block

Cleared Block

Decrypted Blowk

Decrypted Block

"&c T-rles to bind itself to a specific location
et oin memory (and other memory context)

dynamIC linker

‘&c Decryptor must map dynamic linker

:& Slmple SIGTRAP catch

¥ JMP into instructions — common anti-
disassembly trick

?xeC processing
*f@-}‘:f.LIfe Wlthout libc

- Attacks Against Shiva

e hoped Shiva would be defeated

:_— Tu rned out to be about three weeks before
-~ . the first attack succeeded (A non public
_______________________________ aﬂack)

We re now aware of three successful
" attacks against the previously released
‘..;;if%i-t;fverS|ons of Shiva

D

3 .v;i.éExecute the key routines in process
?,f.f?:;U se the keys to decrypt the blocks in

fI ow

‘&c Involved a complete reverse
englneerlng of the shiva loader
InCIudlng its libc

o Shiva 0.96

Re'eased at BlackHat USA 2002
1*5: dded code emulation functionality

Requwes significant code analysis.
' Instructlon by mstructlon processing

- Requwes a fairly weII designed and
|mplemented framework

D

resented at BlackHat Federal 2003
':?':"'D'Ovel hybrid static analysis approach

- -Emulating code execution via a plugin to
g;géleAPm """"

~.4 . .—Can remove a lot of the tedious aspects of
Ay _unwrapplng protected code

Yo _Uber cool

The Third Attack

tad ELF program data into a “virtual”
_______ enwron ment

_' 2 Emulate the execution of the first layer
Y 4 |nd the key headers and emulate

4 | Iecrypt the blocks

z:-reapply them

Find the code emulation blocks and

~ Exploited Weaknesses

755'*;glé?f-;fi’?Pred|Ctable locations
‘&cThe first layer is weak
We certainly didn't predict emulators

D

E-: Make it less of a sitting target
U‘nwrappers resemble exploits

ok They re often fragile and dependent on
""""""""""""""""" hardcoded IOcat|OnS and Values

" Scrambling the Path

GF the encryptor to be able to

'+ _~randomize the loader it needs to store
—-ThIS is a weakness since a complete

1 .« reverse of the encryptor would yield the
‘% 4. meta data form

.. generate generic attacks on known

invariant bits of the loader

D

predlctable addresses entirely
b 4 Worklng on a full code flow analysis

: """"""" Ve 'S | on
The encryptor does perform some

T Slnce they allow the reverse engineer to
spot design patterns

"""""" PFOCeSS t”es to exec a setuid program
. ¥ Section Headers
fi‘Concentratlng on deterring attackers ©

Demo

