An Introduction to MOSDEF

Dave Aitel
Immunity, Inc
http://www.immunitysec.com

o Sk = '
}@L \éﬁt’i”; S / FROZNY Seeg I{Ef E:] VER
Who am I?

_ Founder, Immunity, Inc. NYC based consulting and
products company

- CANVAS: Exploitation Demonstration toolkit
- BodyGuard: Solaris Kernel Forensics

- SPIKE, SPIKE Proxy: Application and Protocol
Assessment

~ Vulns found in:

- RealServer, IIS, Mdaemon, CDE, SQL Server
2000, WebSphere, Solaris, Windows
2000/XP/2003, etc

Definitions

MOSDEF (mose-def) is short for "Most
Definately”

MOSDEF is a retargetable, position
independent code, C compiler that
supports dynamic remote code linking
written in pure Python

In short, after you've overflowed a
process you can compile programs to
run inside that process and report back

to you

Why?

_ To Support Immunity CANVAS

- A sophisticated exploit
development and demonstration
tool

- Supports every platform
(potentially)

- 100% pure Python

~ To advance the state of the art in
exploitation practices

What's Wrong with Current
Post-Exploitation Techniques

_ Current Techniques

_ Standard execve("/bin/sh”)
_ Or Windows CreateProcess("cmd.exe”)

_ LSD-Style assembly components
_ Stack-transfer or “syscall-redirection”

_ Remote ELF/DLL-injection directly from
memory

Unix: execve("/bin/sh”)

_ Does not work against chrooted() hosts
— sometimes you cannot unchroot with
a simple shellcode

_ Annoying to transfer files with echo,
printf, and uuencode

_ Cannot easily do portforwarding or
other advanced requirements

‘Windows (cmd.exe redir)

_ Loses all current authentication tokens,
handles to other processes/files, or
other priviledged access

_ VERY annoying to transfer files

_ Cannot easily do portforwarding or
other advanced requirments

‘Additionally

_ Blobs of “shellcode” inside exploits are
impossible to adapt and debug

- Going to GCC every time you want to
modify an exploit's shellcode is a pain

- Testing and debugging shellcode can
waste valuable hours that should be spent
coding SPIKE scripts

LSD-style Assembly
Components

_ Only semi-flexible

- Not well oriented torwards complex
interactions, such as calling
CreateProcessAsUser(), fixing a heap, or
other advanced techniques while staying
In-process to maintain security access
tokens and other resources

Little actual connectivity to
back-end

— Choice is to "choose a component” rather
than implement any intelligence into your
exploits

_i.e. I want to exploit a process, then if there is
an administrative token in it, I want to offer
the user the chance to switch to that for file
access. Perhaps later he will want to switch
back or try a different token in the process

LSD-style is not extensible

_ Writing assembly components for your
infrastructure is manpower intensive

- Each component must be written in
assembly by hand
_ Can you imagine writing a portforwarder in
assembly?
- Interacting with the components is done

via C — a poor language for large scale
projects

Remote ELF/DLL-Injection

_ Summary of technique:

- First stage connects back and downloads a larger
second stage payload (this is similar to every
technique)

- Second stage payload downloads a large block of
memory (the DLL or ELF) and loads that into the
memory space of the target process

- The new ELF/DLL is relocated into that memory
space

- Any function pointers needed are set to be correct

- Execution continues in the new ELF/DLL, with the
current socket handle passed to it as an
argument or global variable

ELF-Injection Benefits

_ Once second stage relocator payload 1s done, no
more shellcode has to be written ever again

_ Running an ELF (.so) or DLL 1mage within the
process lets you do anything you can do in C

_ Fits in nicely with most of the other post-
exploitation techniques

ELF-Injection Downsides

_ Writing a loader shellcode 1s somewhat difficult

— No open source examples, although this will most
likely change

_ Loader shellcode has to be rewritten for all new
architectures or platforms

_ Maintaining a C DLL/ELF server and a C/Python
client for that server can be a significant effort

‘Shellcode Missions

_ Shellcode can be thought of as two
processes

Exploited Process Attacker

‘Shellcode Missions

_ Step 1 1s to establish back-connectivity

_ Step 2 1s to run a mission

Exploited Process Attacker

Establishing Back-
_ Step 1 1s to es%ﬁi&%%%—tclo\tlnllgé{ivity

— Connect-back
— Steal Socket

— Listen on a TCP/UDP port
— Don't establish any back-connectivity (if mission does
not require/cannot get any) Attacker

Exploited Process

"Running a Mission

_ Step 2 1s to run a mission

— Recon

— Trojan Install
- Etc

Exploited Process Attacker

'Running a Mission

_ Missions are supported by various services from
the shellcode

— Shell access
— File transfer

— Priviledge manipulation

Exploited Process Attacker

‘Mission Support

_ Missions are poorly supported by traditional
execve() shellcode

— Confuses “pop a shell” with the true mission

- Moving the mission and the connectivity code
into the same shellcode makes for big unwieldy
shellcode

Attacker
Exploited Process

‘Mission Split

_ Solution: split the mission from the stage1
shellcode

-~ Smaller, more flexible shellcode

Attacker
Exploited Process

‘Mission Split

_ Solution: split the mission from the stage1
shellcode

-~ Smaller, more flexible shellcode

- Simple paradigm: download more shellcode and
execute it

Attacker
Exploited Process

Stage 2
_ Options:

- Send traditional execve() shellcode

_ Or similar 1-shot mission shellcode

— Establish remote stack-swapping service
— Establish remote MOSDEF service

- Load and relocate an ELF/DLL Attacker
Exploited Process

What to do!

Stack Swapping
_ Aka “Syscall redirection”:

_ 3 steps:

- Send a stack and a function pointer/system call
number

— Remote shellcode stub executes function
pointer/system call using stack sent over

— Entire stack is sent back

Exploited Process

Attacker

[addr][stack]
[stack][result] -

Stack Swapping - Benefits

_ Interactive with remote machine:

— Allows for interactive mission support on top of
fairly simple shellcode

Attacker

Exploited Process

open(“/tmp/a”)

cax=4 fd=self.open(‘/tmp/

>

Stack Swapping - Benefits

_ Most function arguments on Unix are easy to
marshall and demarshall

def unlink(self,path): def setuid(self,uid):
self.setreg("call",posixsyscalls["setuid"])
Deletes a file - returns -1 on error self.setreg("arg1",uid)
self.setreg("call",posixsyscalls["unlink"]) request=""

self.setreg("arg1",self.ESP)
self.sendrequest(request)

request="" result=self.readresult()
request+=sunstring(path) ret=self.unorder(result[0:4])
self.sendrequest(request) return ret

result=self.readresult()
ret=self.unorder(result[0:4])
return ret

Stack Swapping - Benefits

_ Most missions can be supported with
relatively few remotely executed functions

- Execute a command
- Transfer a File

— Chdir()

— Chroot()

- Popen()

_ Original stack swapping shellcode is quite
simple to write and use

Stack Swapping - Problems

_ By definition, stack-swapping precludes
sending over executable code, only data is
sent over, along with a function pointer

_ By definition, simple one request, one
response protocol

Stack Swapping - Problems

_ Fork() becomes a real problem

_ Solution: set a fake syscall number for “exec the stack
buffer”

_ Have to write fork()+anything in assembly
_ Not a nicely portable solution
_ Makes our shellcode more complex

_ Still cannot return a different error message for when
the fork() fails versus when the execve() fails

Stack Swapping - Problems

_ You cannot share a socket with stack
swapping shellcode

- Technically you could write some quite large
shellcode that used a mutex to do more than one
function call at a time, but each function call is
still just one function call, without executable
logic, loops, or if statements

_ Only executing one function call at a time
makes repeated operations tedious

- China's pingtime is 1 second from my network

-~ Those who do not use TCP are doomed to
repeat it

Stack Swapping - Problems

_ Basic stack swapping download code for
Solaris

def download(self,source,dest):

downloads a file from the remote server
infile=self.open(source,0_NOMODE) #CALLS REMOTE SERVER
if infile==-1:
return "Couldn't open remote file %s, sorry."%source
if os.path.isdir(dest):
dest=0s.path.join(dest,source)
outfile=open(dest,"wb")
if outfile==None:
return "Couldn't open local file %s"%dest
self.log("infile = %8.8x"%infile)
data="A"
size=0
while datal="":
data=self.read(infile) #CALLS REMOTE SERVER
size+=len(data)
outfile.write(data)
self.close(infile) #CALLS REMOTE SERVER
outfile.close()

emde e IV N/ A el e € ML O/ ND/ [Ao)\

Stack Swapping - Problems

_ File download protocol from randomhost.cn

Exploited Process Attacker

open(/etc/shadow)

01=4

read(4,1000 bytes)

%01=1000
1000 bytes

read(4,1000 bytes)

%01=1000
1000 bytes

close(4)

%01=0

Stack Swapping - Problems
_ ETA=1second * (sizeof(file)/1000)+2

Exploited Process Attacker

open(/etc/shadow)

o1=4

read(4,1000 bytes)

%01=1000
1000 bytes

read(4,1000 bytes)

%01=1000
1000 bytes

close(4)

%01=0

Stack Swapping - Problems

All iterative operations take 1second * n in
China

- Finding valid thread tokens
- Downloading and uploading files
- Executing commands with large output

- Things | haven't thought of but may want to do in
the future

“But usually you have a fast network!”

“You can always hand-code these things as
a special case to make it faster!”

CUlI it FOSLTEXPIVILALIVUIL
Techniques - Problems

Inefficient network protocols
Inability to do more than one thing at a time

Complex functions require painful hand marshalling
and demarshalling — or the creation of IDL files and
an automatic IDL marshaller, which is just as bad

Common requirements, such as fexec() and
GetLastError() require special casing — a bad sign

Cannot port from one architecture to the other
nicely

'MOSDEF design requirments

_ Efficient network protocol

_ The abllity to do more than one thing at a
time

- | want cross-platform job control in my shellcode!
_ No hand marshalling/demarshalling

_ No need to special case fork() or
GetLastError()

_ Port from one architecture to the other nicely

"MOSDEF sample

_ Compare and Contrast Stack Swapping with

MOSDEF

creat(self,filename):

inputs: the filename to open
outpts: returns -1 on failure, otherwise a file handle
truncates the file if possible and it exists
addr=self.getprocaddress("kernel32.dIl"," Icreat")
if addr==0:

print "Failed to find Icreat function!"

return -1

#ok, now we know the address of Icreat
request=intel _order(addr)
request+=intel_order(self.ESP+0xc) #addr filename
request+=intel_order(0) #mode
request+=filename+chr(0) #filename and null term.
self.sendrequest(request)

result=self.readresult()

fd=istr2int(result[:4])

return fd

def Icreat(self,filename):

inputs: the filename to open

outputs: returns -1 on failure, otherwise a file handle

truncates the file if possible and it exists

request=self.compile(
#import "remote”,"Kernel32. Icreat" as " _Icreat"
#import "local","sendint" as "sendint"
#import "string","filename" as "filename"
//start of code
void main()
{
int i;
i=_Icreat(filename,0);
sendint(i);
}
")

self.sendrequest(request)
fd=self.readint()

ratiirn fd

"MOSDEF sample

_ What does this take?

ef Icreat(self,filename):

_A C compiler
inputs: the filename to open An x86 assembler
outputs: returns -1 on failure, otherwise a file handle B .
truncates the file if possible and it exists _A remote linker

request=self.compile(
#import "remote”,"Kernel32. Icreat" as " _Icreat"
#import "local","sendint" as "sendint"
#import "string","filename" as "filename"
/Istart of code
void main()
{
int i;
i=_Icreat(filename,0);
sendint(i);
}
")

self.sendrequest(request)
fd=self.readint()
return fd

'MOSDEF portability

_ Internal architecture

—1 IL->ASM |

C Code

AT&T
x86

| Compiler —— | Assembler |

|

Shellcode

arger| | Cache |
N
e -

‘MOSDEF network efficiencies

_ While loops are moved to remote side and
executed inside hacked process

_ Only the information that is needed is sent
back — write() only sends 4 bytes back

_ Multiple paths can be executed

— on error, you can send back an error message

- On success you can send back a data structure

'MOSDEF marshalling

_ [Un]Marshalling is done in C

- Easy to read, understand, modify
- Easy to port

_ integers don't need re-endianing

_ Types can be re-used

Cross-platform job control

_ The main problem is how to share the
outbound TCP socket

- What we really need is cross-platform locking

_ Unix (processes) flock()
_ Windows (threads) EnterCriticalSection()

- Now we can spin off a “process”, and have it
report back!

_ The only things that change are sendint(),
sendstring() and sendbuffer()

_ These change globally — our code does not need to
be “thread aware”

Other benefits

No special cases

Having an assembler in pure python gives
you the ability to finally get rid of giant blocks
of “\xeb\x15\x44\x55\x11” in your exploits.
You can just self.assemble() whatever you
need

Future work around finding smaller
shellcode, writing shellcode without bad
characters, polymorphic shellcode

Advanced MOSDEF

_ Applications for MOSDEF

— A SOCKS proxy to allow exploits to be run through
it, without knowing they were even using it

— Executing shell commands with full job control
— Transfering files quickly and easily
— Breaking root (most local exploits are in C already!)

— Adding an encryption layer transparent to all other
MOSDEF applications

— Intelligently enabling your attack mission on the
remote host

— Distributed password cracking

Licensing and Other Issues

Immunity 1s a vulnerability information provider,
not a software company

CANVAS 1s best-of-breed vulnerability
information delivery system

MOSDEF supports that, but other people are free
to build on and improve 1t and use it in their own
free or commercial applications

Hence, licensed under the LGPL

http://www.immunitysec.com/MOSDEF/

Other Projects of Interest

_ Hoon - http://felinemenace.org/~nd/
— X86 AT&T assembler for shellcode written in Python

_ Shellforge

— A Python script to parse GCC generated .o files and
generate shellcode

Conclusion

ILLUSTRATE TRUE RISK

MOSDEF is a new way to
build attack infrastructures,
avoiding many of the
problems of earlier
infrastructures

Prevent hacker starvation -
buy CANVAS for $995 today

More information on this and

other fun things at
http://www.immunitysec.com/

