
An Introduction to MOSDEF

Dave Aitel
Immunity, Inc

http://www.immunitysec.com

Who am I?

_ Founder, Immunity, Inc. NYC based consulting and
products company

– CANVAS: Exploitation Demonstration toolkit

– BodyGuard: Solaris Kernel Forensics

– SPIKE, SPIKE Proxy: Application and Protocol
Assessment

_ Vulns found in:

– RealServer, IIS, Mdaemon, CDE, SQL Server
2000, WebSphere, Solaris, Windows
2000/XP/2003, etc

Definitions
_ MOSDEF (mose-def) is short for “Most
Definately”

_ MOSDEF is a retargetable, position
independent code, C compiler that
supports dynamic remote code linking
written in pure Python

_ In short, after you've overflowed a
process you can compile programs to
run inside that process and report back
to you

Why?

_ To Support Immunity CANVAS

– A sophisticated exploit
development and demonstration
tool

– Supports every platform
(potentially)

– 100% pure Python

_ To advance the state of the art in
exploitation practices

What's Wrong with Current
Post-Exploitation Techniques

_ Current Techniques

_ Standard execve(“/bin/sh”)
_ Or Windows CreateProcess(“cmd.exe”)

_ LSD-Style assembly components

_ Stack-transfer or “syscall-redirection”

_ Remote ELF/DLL-injection directly from
memory

Unix: execve(“/bin/sh”)

_ Does not work against chrooted() hosts
– sometimes you cannot unchroot with
a simple shellcode

_ Annoying to transfer files with echo,
printf, and uuencode

_ Cannot easily do portforwarding or
other advanced requirements

_Windows (cmd.exe redir)

_ Loses all current authentication tokens,
handles to other processes/files, or
other priviledged access

_ VERY annoying to transfer files

_ Cannot easily do portforwarding or
other advanced requirments

_Additionally

_ Blobs of “shellcode” inside exploits are
impossible to adapt and debug

– Going to GCC every time you want to
modify an exploit's shellcode is a pain

– Testing and debugging shellcode can
waste valuable hours that should be spent
coding SPIKE scripts

_LSD-style Assembly
Components

_ Only semi-flexible

– Not well oriented torwards complex
interactions, such as calling
CreateProcessAsUser(), fixing a heap, or
other advanced techniques while staying
in-process to maintain security access
tokens and other resources

_Little actual connectivity to
back-end

– Choice is to “choose a component” rather
than implement any intelligence into your
exploits

_ i.e. I want to exploit a process, then if there is
an administrative token in it, I want to offer
the user the chance to switch to that for file
access. Perhaps later he will want to switch
back or try a different token in the process

_LSD-style is not extensible

_ Writing assembly components for your
infrastructure is manpower intensive

– Each component must be written in
assembly by hand

_ Can you imagine writing a portforwarder in
assembly?

– Interacting with the components is done
via C – a poor language for large scale
projects

Remote ELF/DLL-Injection
_ Summary of technique:

– First stage connects back and downloads a larger
second stage payload (this is similar to every
technique)

– Second stage payload downloads a large block of
memory (the DLL or ELF) and loads that into the
memory space of the target process

– The new ELF/DLL is relocated into that memory
space

– Any function pointers needed are set to be correct

– Execution continues in the new ELF/DLL, with the
current socket handle passed to it as an
argument or global variable

ELF-Injection Benefits

_ Once second stage relocator payload is done, no
more shellcode has to be written ever again

_ Running an ELF (.so) or DLL image within the
process lets you do anything you can do in C

_ Fits in nicely with most of the other post-
exploitation techniques

ELF-Injection Downsides

_ Writing a loader shellcode is somewhat difficult

– No open source examples, although this will most
likely change

_ Loader shellcode has to be rewritten for all new
architectures or platforms

_ Maintaining a C DLL/ELF server and a C/Python
client for that server can be a significant effort

_Shellcode Missions

_ Shellcode can be thought of as two
processes

Shellcode

Exploited Process Attacker

_Shellcode Missions

_ Step 1 is to establish back-connectivity

_ Step 2 is to run a mission

Shellcode

Exploited Process Attacker

_Establishing Back-
Connectivity

_ Step 1 is to establish back-connectivity

– Connect-back

– Steal Socket

– Listen on a TCP/UDP port

– Don't establish any back-connectivity (if mission does
not require/cannot get any)

Shellcode

Exploited Process

Attacker

_Running a Mission
_ Step 2 is to run a mission

– Recon

– Trojan Install

– Etc

Shellcode

Exploited Process Attacker

_Running a Mission
_ Missions are supported by various services from
the shellcode

– Shell access

– File transfer

– Priviledge manipulation

Shellcode

Exploited Process Attacker

_Mission Support
_ Missions are poorly supported by traditional
execve() shellcode

– Confuses “pop a shell” with the true mission

– Moving the mission and the connectivity code
into the same shellcode makes for big unwieldy
shellcode

Shellcode

Exploited Process
Attacker

_Mission Split
_ Solution: split the mission from the stage1
shellcode

– Smaller, more flexible shellcode

Connectivity
Shellcode

Exploited Process
Attacker

_Mission Split
_ Solution: split the mission from the stage1
shellcode

– Smaller, more flexible shellcode

– Simple paradigm: download more shellcode and
execute it

Connectivity
Shellcode

Exploited Process
Attacker

_Stage 2
_ Options:

– Send traditional execve() shellcode

_ Or similar 1-shot mission shellcode

– Establish remote stack-swapping service

– Establish remote MOSDEF service

– Load and relocate an ELF/DLL

Mission
belongs
hereConnectivity

Shellcode

Exploited Process
Attacker

What to do!

_Stack Swapping
_ Aka “Syscall redirection”:

_ 3 steps:

– Send a stack and a function pointer/system call
number

– Remote shellcode stub executes function
pointer/system call using stack sent over

– Entire stack is sent back

Mission
belongs
here

Connectivity
Shellcode

Exploited Process Attacker

[addr][stack]

[stack][result]

_Stack Swapping - Benefits
_ Interactive with remote machine:

– Allows for interactive mission support on top of
fairly simple shellcode

fd=self.open(“/tmp/Connectivity
Shellcode

Exploited Process Attacker
open(“/tmp/a”)

eax=4

_Stack Swapping - Benefits
_ Most function arguments on Unix are easy to
marshall and demarshall

 def unlink(self,path):
 """
 Deletes a file - returns -1 on error
 """
 self.setreg("call",posixsyscalls["unlink"])
 self.setreg("arg1",self.ESP)

 request=""
 request+=sunstring(path)
 self.sendrequest(request)
 result=self.readresult()
 ret=self.unorder(result[0:4])
 return ret

def setuid(self,uid):
 self.setreg("call",posixsyscalls["setuid"])
 self.setreg("arg1",uid)

 request=""

 self.sendrequest(request)
 result=self.readresult()
 ret=self.unorder(result[0:4])
 return ret

_Stack Swapping - Benefits
_ Most missions can be supported with
relatively few remotely executed functions

– Execute a command

– Transfer a File

– Chdir()

– Chroot()

– Popen()

_ Original stack swapping shellcode is quite
simple to write and use

_Stack Swapping - Problems
_ By definition, stack-swapping precludes
sending over executable code, only data is
sent over, along with a function pointer

_ By definition, simple one request, one
response protocol

Stack Swapping - Problems

_ Fork() becomes a real problem

_ Solution: set a fake syscall number for “exec the stack
buffer”

_ Have to write fork()+anything in assembly

_ Not a nicely portable solution

_ Makes our shellcode more complex

_ Still cannot return a different error message for when
the fork() fails versus when the execve() fails

_Stack Swapping - Problems
_ You cannot share a socket with stack
swapping shellcode

– Technically you could write some quite large
shellcode that used a mutex to do more than one
function call at a time, but each function call is
still just one function call, without executable
logic, loops, or if statements

_ Only executing one function call at a time
makes repeated operations tedious

– China's pingtime is 1 second from my network

– Those who do not use TCP are doomed to
repeat it

_Stack Swapping - Problems
_ Basic stack swapping download code for
Solaris
 def download(self,source,dest):
 """
 downloads a file from the remote server
 """
 infile=self.open(source,O_NOMODE) #CALLS REMOTE SERVER
 if infile==-1:
 return "Couldn't open remote file %s, sorry."%source
 if os.path.isdir(dest):
 dest=os.path.join(dest,source)
 outfile=open(dest,"wb")
 if outfile==None:
 return "Couldn't open local file %s"%dest
 self.log("infile = %8.8x"%infile)
 data="A"
 size=0
 while data!="":
 data=self.read(infile) #CALLS REMOTE SERVER
 size+=len(data)
 outfile.write(data)
 self.close(infile) #CALLS REMOTE SERVER
 outfile.close()

return "Read %d bytes of data into %s"%(size dest)

_Stack Swapping - Problems
_ File download protocol from randomhost.cn

 while data!="":
 data=self.read(infil
 size+=len(data)
 outfile.write(data)
 self.close(infile)

Stack
Swapping
Shellcode

Exploited Process Attacker

open(/etc/shadow)

o1=4

read(4,1000 bytes)

%O1=1000
1000 bytes

read(4,1000 bytes)

%O1=1000
1000 bytes

close(4)

%O1=0

_Stack Swapping - Problems
_ ETA=1second * (sizeof(file)/1000)+2

while data!="":
 data=self.read(infil
 size+=len(data)
 outfile.write(data)
 self.close(infile)

Stack
Swapping
Shellcode

Exploited Process Attacker

open(/etc/shadow)

o1=4

read(4,1000 bytes)

%O1=1000
1000 bytes

read(4,1000 bytes)

%O1=1000
1000 bytes

close(4)

%O1=0

_Stack Swapping - Problems
_ All iterative operations take 1second * n in
China

– Finding valid thread tokens

– Downloading and uploading files

– Executing commands with large output

– Things I haven't thought of but may want to do in
the future

_ “But usually you have a fast network!”

_ “You can always hand-code these things as
a special case to make it faster!”

_Current Post-Exploitation
Techniques - Problems

_ Inefficient network protocols

_ Inability to do more than one thing at a time

_ Complex functions require painful hand marshalling
and demarshalling – or the creation of IDL files and
an automatic IDL marshaller, which is just as bad

_ Common requirements, such as fexec() and
GetLastError() require special casing – a bad sign

_ Cannot port from one architecture to the other
nicely

_MOSDEF design requirments

_ Efficient network protocol

_ The ability to do more than one thing at a
time

– I want cross-platform job control in my shellcode!

_ No hand marshalling/demarshalling

_ No need to special case fork() or
GetLastError()

_ Port from one architecture to the other nicely

_MOSDEF sample

_ Compare and Contrast Stack Swapping with
MOSDEF

creat(self,filename):
"""
inputs: the filename to open
outpts: returns -1 on failure, otherwise a file handle
truncates the file if possible and it exists
"""
addr=self.getprocaddress("kernel32.dll","_lcreat")
if addr==0:
 print "Failed to find lcreat function!"
 return -1

#ok, now we know the address of lcreat
request=intel_order(addr)
request+=intel_order(self.ESP+0xc) #addr filename
request+=intel_order(0) #mode
request+=filename+chr(0) #filename and null term.
self.sendrequest(request)
result=self.readresult()
fd=istr2int(result[:4])
return fd

 def lcreat(self,filename):
 """
 inputs: the filename to open
 outputs: returns -1 on failure, otherwise a file handle
 truncates the file if possible and it exists
 """
 request=self.compile("""
 #import "remote","Kernel32._lcreat" as "_lcreat"
 #import "local","sendint" as "sendint"
 #import "string","filename" as "filename"
 //start of code
 void main()
 {
 int i;
 i=_lcreat(filename,0);
 sendint(i);
 }
 """)

 self.sendrequest(request)
 fd=self.readint()

return fd

_MOSDEF sample

_ What does this take?
ef lcreat(self,filename):
"""
inputs: the filename to open
outputs: returns -1 on failure, otherwise a file handle
truncates the file if possible and it exists
"""
request=self.compile("""
#import "remote","Kernel32._lcreat" as "_lcreat"
#import "local","sendint" as "sendint"
#import "string","filename" as "filename"
//start of code
void main()
{
 int i;
 i=_lcreat(filename,0);
 sendint(i);
}
""")

self.sendrequest(request)
fd=self.readint()
return fd

_A C compiler
_An x86 assembler
_A remote linker

_MOSDEF portability

_ Internal architecture

Remote
Linker

Compiler

C Code

Assembler

Shellcode

CacheTarget

IL->ASM

AT&T
x86

_MOSDEF network efficiencies

_ While loops are moved to remote side and
executed inside hacked process

_ Only the information that is needed is sent
back – write() only sends 4 bytes back

_ Multiple paths can be executed

– on error, you can send back an error message

– On success you can send back a data structure

_MOSDEF marshalling

_ [Un]Marshalling is done in C

– Easy to read, understand, modify

– Easy to port

_ integers don't need re-endianing

_ Types can be re-used

_Cross-platform job control

_ The main problem is how to share the
outbound TCP socket

– What we really need is cross-platform locking

_ Unix (processes) flock()

_ Windows (threads) EnterCriticalSection()

– Now we can spin off a “process”, and have it
report back!

_ The only things that change are sendint(),
sendstring() and sendbuffer()

_ These change globally – our code does not need to
be “thread aware”

_Other benefits

_ No special cases

_ Having an assembler in pure python gives
you the ability to finally get rid of giant blocks
of “\xeb\x15\x44\x55\x11” in your exploits.
You can just self.assemble() whatever you
need

_ Future work around finding smaller
shellcode, writing shellcode without bad
characters, polymorphic shellcode

Advanced MOSDEF
_ Applications for MOSDEF

– A SOCK5 proxy to allow exploits to be run through
it, without knowing they were even using it

– Executing shell commands with full job control

– Transfering files quickly and easily

– Breaking root (most local exploits are in C already!)

– Adding an encryption layer transparent to all other
MOSDEF applications

– Intelligently enabling your attack mission on the
remote host

– Distributed password cracking

Licensing and Other Issues

_ Immunity is a vulnerability information provider,
not a software company

_ CANVAS is best-of-breed vulnerability
information delivery system

_ MOSDEF supports that, but other people are free
to build on and improve it and use it in their own
free or commercial applications

_ Hence, licensed under the LGPL

_ http://www.immunitysec.com/MOSDEF/

Other Projects of Interest

_ Hoon - http://felinemenace.org/~nd/

– X86 AT&T assembler for shellcode written in Python

_ Shellforge

– A Python script to parse GCC generated .o files and
generate shellcode

Conclusion
_ MOSDEF is a new way to
build attack infrastructures,
avoiding many of the
problems of earlier
infrastructures

_ Prevent hacker starvation –
buy CANVAS for $995 today

_ More information on this and
other fun things at
http://www.immunitysec.com/

