
BBBBLLLLAAAACCCCKKKK OOOOPPPPSSSS OOOOFFFF

TTTTCCCCPPPP////IIIIPPPPSpliced NAT2NAT And Other
Packet-Level Misadventures

Dan Kaminsky, CISSP

DoxPara Research

www.doxpara.com

Where IÕm Coming FromÉ
® Black Hat / DefCon 0x7D1

® Impossible Tunnels through Improbable Networks
with OpenSSH

® Getting Out:
ProxyCommands for Non-TCP comm layers

l HTTP, SOCKS, UDP, Packet Radio*, AIM/Yahoo*

® Coming In:
Active Connection Brokering for NAT2NAT

l One host exports SSHD to broker
l Other host imports access from broker

® Passing Through:
Dynamic Forwarding for Psuedo-VPN Work

l Web Browsing, Dialpad(Split-H323), etc.

Interesting Problems
® Instant Portscan

® ÒIs it possible to discover instantaneously what network
services have been made available, even on massive
networks?Ó

® Guerrila Multicast
® ÒIs it possible to send a single packet to multiple

recipients, using todayÕs multicast-free Internet?Ó

® ÒNATless NATÓ
® ÒIs it possible to share a globally addressable IP address

without translating private IP ranges a la NAT?Ó
® Is it possible to allow incoming connections to an IP

multiplexed in this manner?

® NAT Deadlock Resolution
® ÒIs it possible to establish a TCP connection between

two hosts, both behind NATs?Ó

On Possibility
® Restraint Free Engineering

® ÒAbandon All Practicality, Ye Who Enter HereÓ
® ÒItÕs amazing what you can do once security is no

longer a concern.Ó

® YouÕve got what youÕve got. Make interesting
things happen.
® It might end up practical.
® It might end up secure.
® Right now, itÕs impossible. Fix that first.

® Maybe.

On Packet Structure
® Packets are Òstrangely orderedÓ

® Where itÕs ending up next, where it came from
recently, how itÕs hopping from one place to the
next, how itÕs hopping to its final destination,
checksum, where the packet came from originally,
where itÕs going to end up, what app it came from,
what app itÕs going to, checksum, god knows what,
ANOTHER checksum

® Why not sort everything; put all the Òcame
fromÓ and Ògoing toÕsÓ Why so much
redundancy? IsnÕt it inefficient?

® WHO CARES?

Layers: Not What, But Who
® One medium, many messages

® Listeners reconstruct meanings relevant to
themselves, ignore the rest

® Managed (ir)responsibility

® Fields are out of order, occasionally because
theyÕre addressed to different entities
® Name and address repeated inside a business

letter and on the envelope

® Messages at one layer can modulate
messages received at another
® Insufficient postage will prevent a correctly

addressed letter from getting sent
® Incorrect internal address has unknown effects

Error Recovery Per Layer
® Layer 2 (Point to Point)

® Errors are quickly recoverable, but error
generation can occur at same layer as layer
control

® Data is destroyed and recreated each frame

® Corporate Fertilizer

® Layer 3 (Router to Router)
® Many more sources of personally irrelevant error
® Highest Traffic Link
® Data is modulated Ð minimum change possible

® Layer 4 (End to End)
® Lowest traffic, highest personal relevance
® Errors here actually matter

®This slide intentionally left blank

TCP Connection Traits: Flags

®Connection Request (Alice -> Bob)
® SYN: I want to talk to you

®Connection Response (Bob -> Alice)
® SYN|ACK: OK, lets talk.

® RST|ACK: I ainÕt listening

®Connection Initiation (Alice -> Bob)
® ACK: OK, beginning conversation.

TCP (and UDP)
Connection Traits: Ports

® Local Port: What application requested the
connection. Usually a random number, 0-65535.

® 0 is a valid port

® Remote Port: What application accepted the
connection. Usually a Òknown numberÓ

® 80 for HTTP

® 143 for IMAP

® 443 for HTTP/SSL

® IP handles who weÕre talking to; Ports handle what
we want from them

TCP Connection Traits:
Sequences

®Sequence Numbers
® 32 bit number, randomly generated, must

be reflected by the opposite party in a TCP
handshake

® After initial reflection, used to relay
information about successful packet
acquisition

Connection Summary

®Flag determines phase
® Asymmetric

®Port determines process
®Sequence Òsecures sessionÓ

® Prevents trivial spoofing attacks
® Also used to manage connection speed,

identify which bytes are being
acknowledged

Stateless Pulse Scanning
® Instant Portscan

® ÒIs it possible to discover instantaneously what
network services have been made available, even
on massive networks?Ó

® Answer: Yes, practically, even securely
® Separate scanner and listener processes
® Sending

® Directly send n SYN packets
® Same local port
® SYN cookies

® Receiving
® Kernel filter packets arriving to local port
® Record connection phase: Port up(SYN|ACK) or host up,

port down(RST|ACK)

Issue: Spoofed Responses

®Easy to spoof hosts being up if the
scanner isnÕt tracking who (or how it
scanned)

®Solution: Invert SYN Cookies!

SYN Cookies
® Developed in Õ96, when SYN floods became

common
® ACK reflects ACK# of SYN|ACK(incremented by

one)
® Encrypts connection state into the SYN|ACKÕs

ACK#
® Therefore, you can use legitimate remote hosts Ð

instead of kernel memory Ð to store handshake
state

® AhhhÉbut SYN|ACK also reflects SEQ# of
SYN in its ACK#É
® Instead of tracking SYN|ACK reflections in the

ACK, track SYN reflections in the SYN|ACK

Implementation: Scanrand 1.0

®Element of: Paketto Keiretsu

®384 lines of libnet and libpcap, w/ trivial
MD4 include
® No state stored

® Scans at ~11-20mbit

® Possibly even portable

®100% complete, release imminent

Observed Results
® Since no state is maintained within the

scanner, we can send SYNs at wire speed
® Implementation can get faster

® Found ~8300 web servers on a corporationÕs
Class B
® Time spent: ~4 Seconds

® Collisions
® Initial SYNs might collide, but SYN|ACKs resend

® SYN|ACKs are given RSTs by present
kernels automatically
® The SYNs were generated in userspace Ð the

kernel has no idea the connection request was
ever sent

Implications
® Userspace manipulation of packets can lead

to less overhead
® Kernels are optimized to talk to other hosts, not

simply to scan them

® Packet content can be overloaded
® A random field can always be replaced with

encrypted data (and vice versa)
® This is the heart of kleptography

® Elegant solutions sometimes can be
reapplied elsewhere
® SYN(really SYN|ACK) cookies made SYN

reception more efficient
® Inverse SYN cookies make SYN transmission

more efficient

Layer Redundancy

® L2: Broadcast MAC Address
® FF:FF:FF:FF:FF:FF

® Absolute

® L3: Broadcast IP Address
® Last IP of Subnet

® Relative

® Sending to it is known as a Directed Broadcast
® Often blocked, if it can be detected

® Detection can beÉsuppressed.

Broadcast GHosts
® Guerrila Multicast

® ÒIs it possible to send a single packet to multiple
recipients, using todayÕs multicast-free Internet?Ó

® Answer: Yes, barely.

® Link a unicast IP to a broadcast MAC address;
all responses to that IP will be broadcast
throughout a subnet
® No individual client need duplicate the datastream

Ð the switch will issue copies of the data to all
downstream hosts

IP Incorporated
® DHCP for an IP

® May or may not use broadcast MAC in DHCP
request Ð just trying to validate that nobody else is
using the IP

® Answer ARP requests for that IP with
Broadcast MAC (or Multicast MAC)
® At L2, w/o IGMP Snooping working, Multicast =

Broadcast

® Issue L4 requests against a remote host,
unicasted via layer 3, with responses
broadcasted locally at layer 2
® Elegance has left the building

Firewall Issues
® NAT

® 100% NAT penetration, as long as the
implementation doesnÕt refuse to NAT for a
broadcast MAC

® PIX, which acceptsÉMulticast MACs!

® Multicast through NAT!

® UDP
® Remote side can send data forever Ð as long as it

keeps packets coming in before the UDP state
expires, no further data is required from behind
the wall

TCP w/ Guerrila Multicast
® Without any listeners, stream dies
® With one listener, stream can operate

normally
® With many listeners, only one should

participate in acknowledging the stream
® If that one dies, another should take its place

® Solution: Random delays
® On reception of a packet to be acknowledged,

queue a response within the next 50-1500ms
® Broadcast response
® If another host broadcasted a response before you

had the chance to, unschedule your response

Recontextualizing L2/L3
® One IP, normally linked to one host, can be

transformed at L2 into all hosts at a given
subnet
® This transformation is undetectable outside the

subnet

® Other Uses
® ÒAll hostsÓ could also include ÒMany hostsÓ using

L2 Multicast packets
® Do we have another other situation where one IP

Òstands inÓ for many hosts?

NAT: Splitting IPs For Fun
and Profit
® NAT multiplexes several hosts into one IP

address by splitting on local port
® Already munging IP, might as well munge ports

too
® Some implementations make best efforts to match

local port inside the network w/ local port outside
® Birthday Paradox: Collision chance = 1 /

sqrt(range_of_local_ports) = 1/256

® If we can always match IP and Port, then we
can always maintain end-to-end correctness
® Only have a problem 1/256 connections to the

same host
® Alternate strategies exist Ð munge the SEQ#(problems

w/ Window overlap), MTU decrement, TIMESTAMPS

MAC Address Translation
® ÒNATless NATÓ

® ÒIs it possible to share a globally addressable IP
address without translating private IP ranges a la
NAT?Ó

® Is it possible to allow incoming connections to an
IP multiplexed in this manner?

® Answer: Yes. Oh yes.
® NAT: L4->L3
® ARP: L3->L2
® MAT: L4->(L3,L2)

® Multiplex with L2/L3 instead of just L3
® Make ARP Table dynamic, based on each individual L4

connection
® Maintains L3 end-to-end integrity

Implementation: AllNewt 1.0
® ÒAll New Translation EngineÓ

® Another part of Paketto Keiretsu

® Translates arbitrary local IP addresses into
globally routable IP addresses
® Instead of just storing IP_SRC, stores IP_SRC,

ETHER_DHOST, and ETHER_SHOST
® If IP_SRC == External IP, packets will retain end-

to-end integrity
® If IP_SRC == RFC1918 IP, packets will be NATted

normally
® If IP_SRC == Yahoo/Microsoft/Whatever, packets

will be NATted a little less normally
® Multiple hosts can share the same IP address, if

MAC is different(and vice versa Proxy ARP)

Pizza Protocol A La Mode
® ÒAnyone order a pizza?Ó
® Stateless approach: Ask everybody, drop

RST|ACK, forward everything else.
® Just broadcast to the IP
® Actually works behind NATs, but you need to

catalog all the local IPs
® Drop all RSTs, pass all streams/ACKs
® Breaks down when two people are listening on the

same port
® Can split port range(1022, 2022, 3022, etc. all being

different instances of 22/ssh)
® Apply host-level heuristics Ð priority for incoming

selection based on outgoing sessions

Incoming State
® Stateful Approach (Òyou ordered the last

oneÓ)
® Ask everyone, but remember whoÕs hosting
® Send to the first host that replies
® Increment the timer every time a packet is emitted

from the serving host for that port
® If no packets are emitted after a certain amount of

time, allow open registration once more

® ÒItÕs amazing what you can do once security
is not an issue.Ó

TCP Splicing

® NAT Deadlock Resolution
® ÒIs it possible to establish a TCP connection

between two hosts, both behind NATs?Ó

® Answer: YesÉbut it ainÕt pretty.
® Convince each firewall that the other accepted the

connection
® Layers will need to be played against eachother to

prevent certain otherwise desirable messaging behaviors
from going too far

An Analogy

®Bill Gates Ôn Larry Ellison
® Why? They can call anyone they want Ð

their secretaries wonÕt stop Ôem.

® None of us can call them Ð their
secretaries will stop us.

® If Bill or Larry did call us, theyÕd actually be
able to hear us reply.

® Asymmetry is in the initiation

Setting Up

®Alice and Bob both behind NATting
firewalls
® Firewalls authorize all outgoing sessions,

block all incoming sessions
® Block w/ state Ð no faking
® Only accept fully validated responses to

outgoing messages
l Ports must match
l SEQ#Õs must match

® Total outgoing trust, zero incoming trust

The Attempt

® Alice tries to send a message to Bob
® SYN hits AliceÕs firewall, is given global IP + entry

in state table Òconnection attemptedÓ

® SYN travels across Internet

® SYN hits BobÕs firewall, RST|ACK sent

® RST|ACK hits AliceÕs firewall, entry in state table
torn down, RST|ACK readdressed to Alice

® Alice gets nowhere

® Bob does the same thing

Analysis

®Good
® Entry in firewall state table, awaiting a reply

®Bad
® Negative reply, entry in state table

destroyed

®Can we get the former without the
latter?

Doomed TTLs
® Packet first hits local firewall, gets NAT entry,

travels across Internet, hits remote firewall,
gets shot down.
® Good stuff closer to us, bad stuff farther away

® TTL: Time To Live Ð SET TO ~4
® Maximum number of hops packet is allowed to

travel along the network before being dropped
® Used by IP to prevent routing loops
® Used by us to prevent state table from closing the

hole
® Alice SYNs w/ Doomed TTL
® Bob SYNs w/ Doomed TTL

® Both firewalls have a hole open for eachother

Packets, Ports, Problems
® Three way handshake Ð SYN, SYN|ACK,

ACK
® Outgoing connections have SYNs and ACKs but

no SYN|ACKs

® Ports
® Need to agree on which ports are linking up
® Need to discover firewall multiplexing rules

® Timing
® Need to know when to attempt connection

® Solution to all three: Handshake Only
Connection Broker
® Involved only in setting up connection

The Other Shoe Drops

® Now you add a connection broker
® HANDSHAKE ONLY.

® Sends the SYN|ACK Host/Port/SEQ#
combination Òvirtually addedÓ to firewall
packet acceptance rules
® Larry Ellison: ÒBill Gates is going to call here in

the next two minutes, please put his call through.Ó

® Need to generate packets, though

Local Port Strategies

®Some firewalls do best effort to match
®Some increment from a fixed counter
®Some use random local ports

® Entropy cannot be differentiated Ð rule
from kleptography

® As long as itÕs translated backÉ

®Need to discover what strategy is being
used

Full Broker Discovery
® Alice and Bob SYN Charlie 2x
® Charlie NFO Alice and Bob
® Alice and Bob SYN Charlie
® Alice and Bob DoomSYN Bob and Alice
® Alice and Bob SYN Charlie
® Charlie SYN|ACK Alice and Bob

® Throw details about port selection in IPID

® Alice and Bob DoomACK Bob and Alice
® Alice and Bob begin normal TCP session to

eachother, as if the other acknowledged
correctly

Much easier strategies
® Source route through connection broker, drop

the route once the connection goes live
® UDP NAT2NAT

® Works all over the place in games
® UDP is symmetrical Ð just spew packets at

eachother with opposite local port / source port,
and eventually the state system will assume the
otherÕs outgoing packet is a response to its own
outgoing packet

® You can run TCP over UDP

® Far less fun though

TTL-Based Firewall Analysis

®Emit a SYN with a low TTL
®SYN spawns ICMP error, hits local

firewall, which rewrites IP header and
forwards to local host

®Firewall doesnÕt rewrite ICMP data
® Original outgoing header
® Can discover how firewall is munging

our datastream

State of Disarray
® State Management
® State = Buffers

® Buffers need to be searched
® Buffers need to be allocated
® Buffers need to be overflown

® If your name is Gobbles

® NAT normally needs to be stateful
® A packet comes in, and given the Source IP, the

Source Port, and the Destination Port, we check
our tables to rewrite on the internal interface the
Destination IP(not firewall) and maybe the
destination port too

® The MAC address is always rewritten, but with MAT we
extract the correct MAC from the state table

Stateless NAT: Possible?
® State is all about things we have to remember

® Stateless scanning is about extracting what we
need from what we get back

® ÒCan we embed the NAT state in every
outgoing IP packet such that every response
received will contain the full NAT stateÓ?
® Answer: Yup. (Thanks, Spence.)
® IP Timestamps Mode 3

® IP Option against each host along the route. Up to four 4
byte IP addresses are specified, with space for up to four
4 byte timestamps to be added

® If IP in the timestamp request matches IP of the router,
the router replaces the timestamp with its own

® If IP doesnÕt match, pass along the timestamps of others

Abusing IP Timestamps
® Insert timestamps from invalid IPÕs containing

not actual timestamps but NAT state
® Encrypt NAT state so it may not be modified

en route
® Decrypt NAT state upon packet return
® Problems

® Need to insert IP options Ð may overflow packet,
may need to fragment, etc.

® IP options are sometimes blocked by firewalls
® Damn source routers ;-)

® Possibilities with TCP Timestamps too
® Reply field contains 32 bits of user specified

stamp

Tricking Firewalls/IDSs
® Alice can forge a connection from an arbitrary

IP by cooperating with Charlie
® Alice looks like sheÕs connecting to Yahoo, but is

informing Charlie of the specifics of the connection
attempt

® Charlie replies as if he was Yahoo, and begins a
TCP stream of arbitrary data to Alice from ÒYahooÓ

® Alice acknowledges all data to ÒYahooÓ with the
doomed TTL Ð we continue low TTL count through
the data stream

® Really messy in terms of ICMP time
exceeded messages, BUT logging systems
might drop these messages

Interesting things are possible

®All code to be released at
http://www.doxpara.com

