
Fixing/Making Holes in
Binaries

wThe Easy, The Hard, The Time
Consuming

Shaun Clowes Ð shaun@securereality.com.au

What are we doing?

Changing the behaviour of programs
Directly modifying the program in itÕs
compiled (binary) form
n No source code
n No recompilation

Types of Binary Modification

Two types:
n Static (executable file) modification
n Runtime (process) modification

Why modify binaries?

For the usual reasons for working on
software:
n Fix bugs
n Add functionality
n Change behaviour

Why not just use source?

No access to it
n COTS
Not readily available
n Source code on a disk hidden in a

cupboard behind mountains of other disks
and CDs

Running programs
n 99.999% uptime, no restart

IsnÕt it too hard?

Traditionally been in the too hard
basket
Depends on the objective
n Normal value proposition

It can be easy, it can also be very hard
n WeÕll cover a variety of techniques
n All do need some coding skill

HowÕs this related to Security?

Two aspects
Defender
n Fix holes in vulnerable software
n No waiting for vendor patches

Attacker
n Backdoor/Trojan software

Scope

Unix systems
n Solaris
n Linux

ELF binaries
Most concepts more generally
applicable

Where to from here?

All about ELF
File patching
In memory patching
Library interception
injectso - Run time library interception

Breakdown of ELF

Need understanding of internal
structure of executables
ELF = Executable and Linkable Format
Originally by Unix System Labs (USL)
Adopted by Tool Interface Standards
committee (TIS)
Used in virtually every recent Unix

Breakdown of ELF

Three main types of ELF files
n Relocatable file Ð object file ready to be

linked with others
n Executable
n Shared Object (Library)

Only last two relevant
Concentrate on Executables

Static Vs Dynamic Executables

Static executables are self contained
n They do not need any external code

Dynamic executables use external
data/code at run time
n Shared libraries
n Smaller executables
n Less disk/memory use
n Much more common

ELF ÔViewsÕ

ELF describes two separate ÔviewsÕ of an
executable, a linking view and a loading
view
Linking view is used at static link time
to combine relocatable files
Loading view is used at run time to load
and execute program

ELF ÔViewsÕ Ð Split

ELF Header

Program Headers Section Headers

File
Contents

ELF Linking View

Divides executable into
many meaningful ÔSectionsÕ
Sections have:
n A name and type
n Requested memory location

at run time
n Permissions

(writable/executable)

.interp

.text

.rel.plt

.dynstr

.dynsym

.dynamic

ELF Linking View Ð Important
Sections

¥Code¥.text
¥Initialized data¥.data

¥Procedure linkage table¥.plt
¥String tables¥.strtab, .dynstr

¥Relocations for section x¥.rel.<x>

¥Symbols (static/dynamic)¥.symtab,
.dynsym

¥Dynamic linking information¥.dynamic
¥Requested Dynamic linker¥.interp

ELF Linking View

Not all sections needed at run time
n Information used for linking
n Debugging information

Difference between link time and run
time

ELF Loading View
Much simpler view, divides
executable into ÔSegmentsÕ
Describes
n Parts of file to be loaded into

memory at run time
n Locations of important data at run

time

Segments have:
n A simple type
n Requested memory location
n Permissions (R/W/X)
n Size (in file and in memory)

INTERP

DYNAMIC

LOAD

LOAD

ELF Loading View Ð Segment
Types

¥Portion of file to be loaded into
memory

¥LOAD

¥Pointer to dynamic linking
information (.dynamic section)

¥DYNAMI
C

¥Pointer to dynamic linker for this
executable (.interp section)

¥INTERP

ELF ÔViewsÕ - Linking to Loading
.interp

.symtab

.strtab

.data

.text

.dynsym

.dynamic

LOAD (RX)

LOAD (RW)
. .

INTERP

DYNAMIC

X

ELF Loading View

Semantics of section table (Linking View)
are irrelevant in Loading View
Section information can be removed
from executable
n Good way to kill GNU libbfd programs

ELF Loaders

Operating system routines to load
executable and begin execution
ELF is very flexible, Loaders arenÕt
n Bugs and idiosyncrasies
n ELF files conforming to the specification

donÕt always run

Loading and Executing an ELF
Executable

File opened
Map LOAD segments into to memory
Calls the dynamic linker specified in
the INTERP segment, passing
information about the executable

Dynamic Linker/Loader

Handles all of the dynamic/shared
library needs of executable
Retrieves information from the
DYNAMIC segment
Loads all required shared libraries into
memory
Modifies executable such that it can
access needed resources in the libraries

The Dynamic Section/Segment

A table with records containing data
critical to dynamic loading/linking
Allows dynamic linker to quickly find out
information about the executable
n No need for section table etc
Each record consists of:
n A type (tag)
n Value (or pointer)

Dynamic Segment Record
Tags

¥Address of relocation entries¥DT_REL

¥Offset to name of a required
shared library

¥DT_NEEDED

¥Pointer to debugging
information from dynamic linker

¥DT_DEBUG

¥Address of relocation entries
associated with the PLT

¥DT_JMPREL

Loading and Executing an ELF
Executable

1Map in shared libraries corresponding
to DT_NEEDED entries

2 Add libraries to link map stored in area
referenced by DT_DEBUG entry

3 Perform relocations

Relocations

Tell Dynamic Linker to rewrite parts of
executable to refer to external
resources
n Link to dynamic symbol table entries

Needed to allow program to use
code/data in shared libraries
n Since address decided at run time

The Procedure Linkage Table

Stored in the .plt section
Allows executables to call functions that
arenÕt present at compile time
n Shared library functions (e.g printf())

Set of function stubs
n Relocations point them to real location of

the functions
n Normally relocated ÔlazilyÕ

The Procedure Linkage Table

...
 printf("Hello!\n");
...

printf() stub

PLT

libc.so.6

printf()

Program

The Global Offset Table

Like PLT but for non function symbols
n ÔstderrÕ, ÔerrnoÕ etc

Referenced by PLT on IA32
n But NOT Sparc

Both PLT and GOT targeted for attack
in format string vulnerabilities

DT_DEBUG Record

Pointer to a debug structure provided
by the Dynamic Linker (at run time)
Normally examined by Debuggers
Contains pointer to link map which
describes memory layout of process
n Which binary files are loaded
n Base address at which they are loaded

File Patching

Statically modify code in executable file
Need to:
n Insert additional code
n Link existing code to added code

File Patching

Existing Code

New Code

File Patching

Need to understand existing code
n Disassembly
n Reverse Engineering

New code
n Assembly
n Hybrid C

File Patching

Where to put additional code?
n Overwrite existing unused code

wHard to identify

n Section padding
wNot much space
wNeed section in executable segment (on non

IA32 targets)

File Patching

n Add a segment
w ELF Loader bugs and issues

n Extend an existing segment
w Add as much space as you need

n Other methods
w Unix viruses

File Patching Ð Extending a
Segment

segment
section

section

section
section

...

...

File Patching

Demo

File Patching

Features
n Very powerful, can change almost anything
n Permanent

ButÉ
n Complex and error prone
n Program must be restarted
n CanÕt easily call new library functions

In Core Patching

Exactly like file patching but performed
on process memory image
Modify process memory using ptrace()
or procfs

In Core Patching

Where to put additional code?
n Memory space must be mapped executable

w Except under IA32

n Overwrite unused code
wHard to identify

n Use segment padding
w Segments padded to page boundaries

In Core Patching Ð Segment
Alignment

¥0x00110¥0x000f0¥0x8049644

¥Memory Size¥File Size¥Virtual Address

segment
nulls

0x8049734

0x8049644

0x8049754

padding

padding
0x8049000

0x804a000

1604 Bytes

2220 Bytes

32 Bytes

240 Bytes

In Core Patching

Demo

In Core Patching

Features
n Very powerful, can change almost anything
n Non permanent
n Can be performed on running process
ButÉ
n Complex and error prone
n Can easily kill target
n Limited space for new code
n CanÕt easily call new library functions

Library Interception

Dynamic loader resolves at run time all
external symbols (dynamic relocations)
n GOT Ð Data relocations
n PLT Ð Function relocations

How?

Library Interception

Reads DT_NEEDED entries in
PT_DYNAMIC segment
Loads files and adds them to link map
Then goes on to process relocations

Library Interception Ð Process
View

./testprog

libc.so

libtermcap.so

libncurses.so

Process Memory
Link Map

./testprog
libc.so
libncurses.so
libtermcap.so

Dynamic Linker - Resolution

When processing relocations dynamic
linker looks through map and
n Searches each libraries exported symbols
n Tries to find matching symbol name
n Looks for non ÔweakÕ function

First match is the winner

Library Function Call
Interception

Trick is to get your library loaded first
It will be the match (winner) for all its
exported symbols
n Can intercept any dynamic function call

(libc etc)

Library Interception Ð Getting
in First

Modify DT_NEEDED records
n Overwrite other library entry

wOpen it in your library with linker routines
w Substitute library depends on old library

n Move DYNAMIC segment and recreate
w Add entirely new library dependency

Library Interception Ð Getting
in First

Use Linker environment
n LD_PRELOAD specifies libraries to be

loaded immediately
n Very common technique

Library Intercpetion Ð Calling
Real Function

Intercepting function usually needs to
call old function
Dynamic linker provides interface
(through libdl.so):
n dlopen Ð Open a library
n dlsym Ð Get address of symbol,

RTLD_NEXT flag specifies libraries after
current one

Library Interception - Demo

Demo

Library Interception

Features
n Easy and simple

w All interception code can be done in C

n Safe
n Can call any library functions easily

Library Interception

ButÉ
n LD_PRELOAD not permanent
n DT_NEEDED approach library in place at all

times
n Program must be restarted

injectso Ð Runtime Library
Interception

injectso is like InjLib for Windows
Injects a shared library into a running
program
Much harder on Unix than in Windows
n Operating system provides minimal support

injectso - Breakdown

Opens process (using ptrace() or
procfs)
Searches link map to find dlopen()
equivalent
Construct arguments to dlopen() on
stack
Force process to jump to dlopen()
n Set return address to be 0x41414140

injectso Ð Breakdown

Function ends with SEGFAULT
n Return to 0x41414140
n Intercepted by injectso

Can call user function
n Provide address of DYNAMIC segment

Process state restored
n Syscalls restarted

injectso Ð Intercept.o

Utility object, link into inject libraries
Redirect dynamic function calls
User code provides list of functions to
override
Finds functions in PLT and patches
them to refer to replacement versions
Provides pointer to old function

injectso Ð Intercept.o

...
 printf("Hello!\n");
...

printf() stub

PLT

libc.so.6

printf()

Program

X

newprintf()

Injected Library

injectso

Demo

injectso

Features
n Simple
n Flexible
n No modifications to binary file
n No disk files

w Library can be deleted after injection

n Service does not need to be restarted

injectso

Technical Features
n ÔUnlimitedÕ space for code
n No trampolines

w Executable/Writable memory not required

n Can call any library functions easily
n Can override any library functions easily

ButÉ
n Not permanent

Thankyou for listening!

Questions?
Feedback
n IP - 172.16.0.2
n MAC - 00:10:5a:d3:5d:b2
n SSL Certificate Fingerprint (SHA1)

a0 8f db 28 7a 15 2e 86 76 42
6e 8a b1 27 32 55 4f 31 12 06

n Username and Password are printed on the receipt
part of your badge

Contact Details

SecureReality Web Site:
http://www.securereality.com.au

Email:
shaun@securereality.com.au

