
Intel Confidential — Do Not Forward

Enterprise API Security Choices:
One API, Total Security

Blake Dournaee

Senior Product Manager

Intel Data Center Software Division

Securing All Channels to the Enterprise

Mobile/HTML5

Web Browser

Internal Devs

External Devs/3rd Party Apps

Kiosk/Thick client

One API set,

any channel,

with Enterprise

Security

“Hodgepodge” of legacy

infrastructure and

programming languages…

Difficult to apply consistent

security, auditability, risk and

compliance for API calls…

.. worse API data spans

deployment models

PII Data

Mobile/Native

A
P

I

Enterprise API Security Layers

Datacenter Enterprise Applications Enterprise Data

Perimeter Defense

Trust and Control

Assurance and Compliance

Consumers

Employees

Partners

Client Security

 How to handle sensitive data in

API requests & responses?

 How to audit API calls?

 Which partner applications can

access APIs?

 Which employee applications can

access APIs?

 How do I trust incoming API calls?

 How do I handle SSO for API calls?

 How do I keep API threats out?

 How do I scan incoming API calls

for malware and virus payloads?

 How do I protect against app-level

distributed Denial of Service (DoS)

 How do I protect clients from

malware and content threats?

Remember! Security

should be a declarative

policy, not “coded in”

Consume Expose

API

API Threats are Real and Now…

4

But… are these any different than what we saw in the web world?

APIs are a Semantic Tunnel

App

Browser

GET

POST

Application Server Database

GET

PUT

POST

DELETE

GET

PUT

POST

DELETE

GET

PUT

POST

DELETE

GET

POST

Application Server Web Server Database

APIs: Unmediated Function Calls

Web App: Mediated Function Calls

Semantic Tunnel: Countermeasures

App Application Server

GET

PUT

POST

DELETE

Countermeasures:
 Obfuscate, hide, or “turn off” certain

methods
 Input validation
 Data-type checking*

 Data range checking
 Word scanning

 Pattern Scanning
 Avoid defaulting all data-types to ‘string’
 Schema validation (JSON/XML)

 Validation/Rejection by regex match
 Message size limitations
 Message structure limitations (XML)
 Attachment scanning/limitations

Remember! Security

should be a declarative

policy, not “coded in”

Service Level Management (Throttling ! = Security)

API Plan #1

API Plan #2

API Plan 3

Purpose Control Scope Enforcement

API Plans Coarse Grained Business Enablement Single API Messages per day, quota – enforced per calling

application

Quality of Service Fine Grained Infrastructure Tuning Single API, set of APIs, set of

services

Transaction rate, data rate, latency, utilization (plus

more) –enforced per API, service, or IP

Adaptive DoS Fine Grained Infrastructure Protection Connection & IP Address Rate shaping, alerting and blocking –

Enforced per connection & IP

Multi-Policy Service Level Management (SLM)

Data Store

Quality of

Service

Policy

(QoS)

Quality of

Service

Policy

(QoS)

Application Server
Developers

& Apps

REST

A
d
a
p
ti
v
e
 D

o
S

New Developer AuthN Requirements

Enterprise Authentication
Mechanisms

Authenticating
Credential

Secret

Username Password

Certificate Private Key

Kerberos Ticket Password

SAML Assertion Password or Private
Key

Username One-time Password

API & Mobile Authentication
Mechanisms

Authenticating
Credential

Secret

API Key API Key

API Key Shared Secret

OAuth Consumer
Key

OAuth Consumer
Secret

Username Password

Username One-time Password

?

Existing Enterprise
IDM systems

Enterprises can’t afford
another identity silo

Consumer & BYOD

API Key Security

Server

HTTP

Request

HTML5/JavaScript

HTML5 Application Deployment Model

API Key Security Concern
• HTML5 apps are pushed to the client keys

distributed to all clients

• Clients can view source to obtain API keys

• Solution #1: Obfuscation

• Solution #2: Step-Up Authentication

2-Legged OAuth

• Client Credentials

• Resource Owner Password

Credentials

3-Legged OAuth

• Authorization Code

• Implicit Grant

 Requires out-of-band shared secret

 Client apps must be completely

trusted

 No refresh tokens

 No user concept

 Mitigates exposure of shared

secrets

Common Enterprise OAuth 2 Flows

Access

Token

Authenticate

Access Token AuthZ Server

1. AuthZ Req

2. AuthN & Z

3. API Call

 Requires out-of-band shared secret

 Solves impersonation anti-pattern

 Client apps can be untrusted

 Supports refresh tokens

 Requires user concept

 Mitigates exposure of shared

secrets

A
P
I

A
P
I

Mobile

Device

Application

Server

1. Authorization Request received by server (HTTP GET)

2. Server Validates the

request , including scope

3. HTTP 200 OK back to the client with HTML Page

4. HTTP POST with username/password and authorization

5. Server validates user

authentication (w/ LDAP)

and authorization decision;

generates authz code

LDAP

6. HTTP 302 Redirect with authorization code

7. HTTP POST for access code request done over SSL

w/HTTP Basic Authentication, uses authz code

8. Server validates

authorization code,

generates access code

9. HTTP 200 OK response with JSON containing access code

10. HTTP GET to Location API using

access code in HTTP header

Database

Web

App

0. Client details are

registered in a persistent

store, including client

name, shared secret,

redirection URI – done

with a custom web app

LDAP

authentication of

the user (step 5)

Remember! Security should be a

declarative policy, not “coded in”

OAuth is Not Easy

• Source code, blue prints

• Roadmap data

• Business plans & models

• Data from M&A, marketing

Intellectual Property

Cloud Storage

NO SQL

RDBMS

Data
Warehouse

Protect organization IP, assets, resources and

improve competitive posture

Regulatory Drivers

• Credit card data (PCI)

• Personally identifiable information (PII)

• Medical records (HIPAA)

• Financial data (SOX, GLBA)

Reduce assessment costs, avoid fines,

protect customers & shareholders

API Compliance

Hybrid Enterprise

HTTP POST

SSN

CC#

SSN

CC#

Data Leaks

HTTP Response Data

Store
App

Server

Remember! Security should be a
declarative policy, not “coded in”

Trust Threats

 RESTful Service

 OAuth 2.0 – Auth Code Flow

 API Keys

 Server side SSL

 DDoS Protection

 Content Attack Protection

 API Plans

 API Resource Protection

 RESTful Service

 2-Way SSL

 API Keys with Step-Up Auth

 2-Legged OAuth – Client Credentials Flow

 SSO – Use SAML 2.0 or OpenID Connect

 JSON Web Tokens

 DDoS Protection

 Content Attack Protection

 API Plans

 API Resource Protection

 SOAP or REST

 SSL w/ Enterprise authentication

 SSO – Use SAML 2.0 or OpenID Connect

 API Plans

 API Resource Protection

 SOAP WS-Security (X.509 or HMAC)

 2-Way SSL

 DDoS Protection

 Content Attack Protection

 API Plans

 API Resource Protection

 SOAP or REST

 API Keys

 No Key

 SSO – Use SAML 2.0 or OpenID Connect

 API Plans

 API Resource Protection

3rd Party
Apps

Enterprise
Mobile Apps

Internal

Client /
Server

Partner
Web

Services

Internal
Apps/

Developers

API Security Choices

API
Governance,
Management
 and Security

APIs

API

API

API

Database
 Master

Database
slave 1

Database
slave N

L
o

a
d

 B
a

la
n

ce
r

L
o

a
d

 B
a

la
n

ce
r

L
o

a
d

 B
a

la
n

ce
r

Delivery &
Governance

Tier
Data Service

Layer
Persistence

Tier

HTML5 &
Native Apps

“New” 3-Tier Architecture

• Clients from any channel

• Synchronous or socket

communication

• Transport Level Security

with session authentication

• API Governance Layer –

handles scalability, security,

and security decoupling

• Single point of audit, security

control and compliance

• APIs – The backbone of the

architecture

• Surface data from any

system

• Logical persistence tier,

data may be stored in RDMS

or NOSQL stores

Enterprise

IDM

The API Governance Layer helps mitigate

API trust and threat concerns in the

application architecture

 Security, Access, Compliance Developer Community

• API packaging as

products

• Reporting and analytics

for usage and latency

• Share meta data via

portal

• Developer facing services

catalog, developer

enablement

• Developer on-boarding

• Discovery of aggregated

services from IT

• App & mobile firewall

• Data Loss Protection

• Federated ID Brokering

• PCI PII Data Tokenization

• Mobile friendly OAuth

App Service Gov & Integration

• Lightweight ESB

• SOA & Mobile integration

• Orchestrate & transform

• Protocol translation

• Eclipse workflow design

Intel® Expressway API Manager

Cloud API Management

Enterprise

API Sharing
Portal

Security &
Integration

• Best of Breed API Management

• On-prem control

• Enterprise Security & Integration

• Multi-Community API Sharing

Mobile
Middleware

Apps

API Resource Center: cloudsecurity.intel.com

Forrester SOA to API
Webinar Solution Brief: Internal APIs Use Case Video

