
Vulnerability Management in

Software:

Before Patch Tuesday
KYMBERLEE PRICE

BUGCROWD

whoami?

 Senior Director of a Red Team

 PSIRT Case Manager

 Data Analyst

 Internet Crime Investigator

 Security Evangelist

 Behavioral Psychologist

@kym_possible

Vulnerability Management

 Vulnerability management is the "cyclical practice of identifying, classifying,
remediating, and mitigating vulnerabilities", especially in software and firmware.
Vulnerability management is integral to computer security and network security.

 Vulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer
system in search of known vulnerabilities, such as open ports, insecure software
configuration, and susceptibility to malware. Unknown vulnerabilities, such as a zero-day
attack may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such
as a buffer overflow exploit with relevant test cases. Such analyses can be facilitated by test
automation. In addition, antivirus software capable of heuristic analysis may discover
undocumented malware if it finds software behaving suspiciously (such as attempting to
overwrite a system file).

 Correcting vulnerabilities may variously involve the installation of a patch, a change in
network security policy, reconfiguration of software (such as a firewall), or
educating users about social engineering.

So Vuln Mgmt is A NetSec Issue!

Cost to Fix Vulnerabilities

The National Institute of Standards

and Technology (NIST) estimates that

code fixes performed after release

can result in 25+ times the cost of fixes

performed during the design phase.

tl;dr: Pay me now or pay me later…

with interest.

“

”

Fix vulnerabilities as early as is

practical, resulting in fewer

vulnerabilities to patch at the most

expensive time - late in the

development cycle.
THE GOAL OF VULNERABILITY MANAGEMENT

Easy, right?

Security

versus…

Performance

Usability

Functionality

Development

cost & time

Secure Development Lifecycle

Training Requirements Design Implementation Verification Release Response

Vulnerability Management Process

Identify
Issue1

Assess
Impact2

Dev &
Test Fix3

Deploy
Fix4

Post
Release5

Identify Issues

 Internal Security Research Team, Consultants – pre-release vuln assessments

 External Security Researchers – post release incident response, bug bounties

 Third Party Libraries/OSS Disclosures – both pre and post release

 Automated Tools & Analysis

 Crash log analysis

 Lots of vulnerabilities to manage Vulnerability Management

Identify
Issue1

Assess Impact: Prioritization Matters

 You have 150 vulnerabilities open with CVSS 7.5 and above

 Your inbound new vulnerabilities average 15 dev tasks per week,
from both internal and external sources

 What do you fix first?

 Highest CVSS Score?

 FIFO? LIFO?

 Externally known issues?

 Issues with Exploit Presence in Metasploit?

 Intelligent prioritization reduces risk

Assess
Impact2

Dev & Test Fix

 “Just ship it, we can patch that later” is not cost effective, but becomes

more likely the closer you get to release dates

 Vulnerabilities are inevitable. Choose those that you fix pre-release and

those you postpone to post-release carefully.

 Don’t put off fixing the complicated vulnerabilities – they won’t get easier

once the product is in customer hands

 Sustainment planning is not just for post-release – you will have to patch

vulnerabilities in perfectly functional code before RTM

Dev &
Test Fix3

Now lets go write some code!

The Numbers: 2007-2014

Library Vuln Count Vulns Per

Year

Releases

Per Year

Average

CVSS

OpenSSL 71 10 4-5 5.49

FreeType 52 8 2 8.02

Libpng 28 4 3 6.65

Apache 97 14 6 4.99

387 55 9 8.52

481 120 4-5 7.36*2010-2014

Take Aways

Vulnerability Management in SDL

 Define guiding

Security principles

 Define prioritization

model and

sustainment plan

Requirements Design Implementation Verification

 Design for security

and reduce attack

surface

 Evaluate vuln trends

in libraries as part of

selection criteria

 Automated static
analysis tools

 Deprecate unsafe
functions

 Code scanning
tools to monitor all
third party libraries
– know what you
use and where

 Automated static
and dynamic
analysis tools,
fuzzing

 Manual pen testing
& attack surface
review

 Update 3rd party
libraries regularly

How do you report on Vuln Mgmt?

 Analysis of vulnerability trends to predict future workload

 How many vulnerabilities are identified per month?

 What are their sources?

 What are the vulnerability types? Is dev training indicated?

 How many have been fixed, and how quickly is the backlog growing (or shrinking)?

 What is your Time To Fix?

 Success (or not) of SLA’s based on resolution of vulnerabilities

Network Admins

 Ask potential software vendors about their SDL program and vulnerability trends

 Monitor the third party libraries being used in software you deploy and press vendors for

security fixes

 Make it clear security is a priority

Discussion

Kymberlee Price Senior Director of Researcher Operations

@kym_possible Bugcrowd

