Finding the Right Tools for the Job

• Tools can help for design or "undesign"
• Access to tools is no longer a hurdle
• Can outsource to those with capabilities/equipment you don't have
• The key is knowing what tools are available and which one(s) are needed for a particular goal/attack
Tools of the Hardware Hacking Trade

- Signal Monitoring/Analysis
- Manipulation/Injection
- Imaging
Signal Monitoring / Analysis
Oscilloscope

• Provides a visual display of electrical signals and how they change over time

• Introductory guides: www.tek.com/learning/oscilloscope-tutorial

• Range of hobbyist (low end) and professional (high end) tools
 – Analog/digital/mixed signal, # of channels (~1-4), bandwidth, sampling rate, resolution, buffer memory, trigger capabilities, math functions, protocol decoding, probe types, accessories

• Standalone: HP/Agilent, Tektronix, Rohde & Schwarz, LeCroy, Rigol

• PC-based: PropScope, USBee, PicoScope
Oscilloscope 2
Logic Analyzer

• Used for concurrently capturing, visualizing, and decoding large quantities of digital data

• Introductory guides: www.tek.com/learning/logic-analyzer-tutorial

• Range of hobbyist (low end) and professional (high end) tools
 – # of channels (~>8), sampling rate, buffer memory, trigger capabilities, protocol decoding, probe types, accessories

• Standalone: HP/Agilent, Tektronix

• PC-based: LogicPort, Saleae Logic, USBee, LeCroy LogicStudio, DigiView, sigrok (open source analyzer SW)
Logic Analyzer 2
Protocol Analyzer

- Real-time, non-intrusive monitoring/capturing/decoding of wired communications
 - Some also support data injection, current measurements
- HW "man in the middle" to avoid any OS/SW overhead on host
- Total Phase Beagle (USB/I2C/SPI) and Komodo (CAN)
- LeCroy Voyager (USB 2.0/3.0)
- Daisho (Ethernet, USB 3.0, HDMI)
 - http://ossmann.blogspot.com/2013/05/introducing-daisho.html
Protocol Analyzer 2

http://teledynelecroy.com/doc/usb-voyager-m3i-power-tracker-usage-case-examples
USB-to-Serial Adapter

- Converts TTL-level asynchronous serial to USB Virtual COM Port
 - TXD = Transmit data (to target device)
 - RXD = Receive data (from target device)
 - DTR, DSR, RTS, CTS, RI, DCD = Control signals
 (uncommon for modern implementations)
- Easily connects to PC, Mac, Linux w/ suitable drivers
- Ex.: FTDI FT232, CP2102, PL2303, Adafruit FTDI Friend
- Many embedded systems use UART as debug output/console/root shell
USB-to-Serial Adapter 2

-- STB222 Lite Primary Bootloader 0.1-3847, NI (04:00:34, Feb 17 2009)
-- Andre McCurdy, NXP Semiconductors

Device: PNX8335 M1
Secure boot: disabled, keysel: 0, vid: 0 (expecting 2)
Poly10: 0x00000000
RNG: enabled
RSA keyhide: enabled
UID: 00000000000000000000000000000000
KC status: 0x00000000
Flash config: 7 (omni: 8bit NAND), timing: 0x0C
CPU clock: 320 MHz
DRAM: 200 MHz, 1 x 1 64MBYTE 16bit device (SIF0): 64 MBytes
NAND: RDY polling disabled
NAND: (AD76) Hynix SLC, pagesize 512, blocksize 16k, 64 MBytes
NAND 0x00020000: valid header
NAND 0x00020000: valid image
aboot exec time: 179602 uSec

U-Boot 1.2.0.dev (Secondary Bootloader) (Jul 31 2009 - 02:53:01)

CPU: PNX????
Secure boot: disabled
DRAM: 64 MB
NAND: nCS0 (force asserted legacy mode)
NAND: Hynix 64MiB 3.3V 8-bit
NAND 0x02a3c000: bad block
NAND 0x030bc000: bad block
NAND 0x03478000: bad block
NAND 0x0385c000: bad block
Board Opts: SCART PAL
Splash: done
u-boot startup time so far: 1012 msec
Hit any key to stop autoboot: 1 ... 0

STB225v1 nand#
Bus Pirate

- Open source tool to interface with serial devices
 - SPI, I2C, 1-Wire, LCD, MIDI, MCU/FPGA programming, bit bang
- Basic logic analyzer/digital decoding functionality (slow)
- http://dangerousprototypes.com/docs/Bus_Pirate
GoodFET

- Travis Goodspeed
- Open source tool for interfacing/hacking chips & target devices
- Different FW and Python scripts for different functionality
 - Ex.: JTAG, SPI, I2C, AVR, PIC, Chipcon/Nordic/Atmel RF

ChipWhisperer

- Colin O'Flynn
- Collection of open source HW/SW tools for learning about side channel power analysis
 - Custom board + OpenADC + ZTEX USB-FPGA Module 1.11c (XC6SLX25, SG 3, 64 MB RAM)
- Currently supports AES-128 and -256
- Correlate measured power w/ predicted power to guess byte of key (subkey)
Spectrum Analyzer

• Used for visualizing RF/radio spectrum
 – Measures magnitude of input signal v. frequency
 – Can characterize system operation/emissions by dominant frequency, power, distortion, harmonics

• Range of hobbyist (low end) and professional (high end) tools

• Ex.: Tektronix, Agilent, Signal Hound, RF Explorer, RTL-SDR (RFL2832U dongle w/ BeagleBone)
Spectrum Analyzer 2

www.oz9aec.net/index.php/beaglebone/480-rtlizer
Manipulation / Injection
Soldering Iron

• Provides heat to melt solder that physically holds components on a circuit board
• Range from a simple stick iron to a full-fledged rework station
 – Interchangeable tips, adjustable temperature, hot air reflow
• Weller, Metcal, Hakko, Radio Shack (!)
Soldering Accessories

- **Solder**: Thin gauge (0.032" or 0.025" diameter), ~60/40 Rosin core or lead-free alloy
- **Desoldering Tool** ("Solder Sucker"): Manual vacuum device that pulls up molten solder into its chamber
- **Desoldering Braid**: Wicks molten solder up into braid
- **Flux**: Assists in heat transfer and removal of surface oxides
- **Tip cleaner**: Helps to keep the solder tip clean for even heat distribution. Ex.: Sponge, tip tinner
Rework station

- Hot air convection, infrared, laser
- Allows easier removal and reflow of individual SMD components
 - Especially BGA (Ball Grid Array) & CSP (Chip Scale Package)
- Nozzles for different package types/mechanical footprints
- Weller, Metcal, Hakko, ZEVAC, Zephyrtronics

https://www.youtube.com/watch?v=3Vf0nsVBHJE
ChipQuik

- Allows the quick and easy removal of surface mount (and some through hole) components
- www.chipquik.com
- Primary component is a low-melting temperature alloy (less than 200°F)
 - Reduces the overall melting temperature of the solder
 - Enables you to just lift the part right off of the board
Device Programmer

- Used to read/write most devices that contain memory
 - Standalone or internal to MCU
 - Ex.: Flash, E(E)PROM, ROM, RAM, PLD/CPLD, FPGA
- Some devices can be manipulated in-circuit
- Many support > 35k different devices
- Few extraction/read-out/access mechanisms exist
 - Security bit/fuse, password protection
- EE Tools, Xeltek, BP Microsystems, Data I/O
JTAG Tools

• Off-the-shelf HW tools designed for JTAG-based interaction w/ target device
• JTAG = Industry-standard test/program/debug I/F, could be useful for attack or stepping stone against embedded device
• Many different types available
 – Ensure tool supports your target architecture
 – Find out what the IC vendor recommends for legitimate engineers

http://spritesmods.com/?art=hddhack

www.blackhat.com/html/bh-us-10/bh-us-10-archives.html#Jack
JTAG Tools 2

- **RIFF Box**
 - Mainly used for unbricking/data extraction from mobile phones
 - www.jtagbox.com

- **H-JTAG**
 - Standalone software & works w/ existing target IDEs

- **SEGGER J-Link**
 - Works w/ existing target IDEs
 - www.segger.com/debug-probes.html

- **Bus Blaster (open source)**
 - http://dangerousprototypes.com/docs/Bus_Blaster

- **Wiggler or compatible (parallel port)**
JTAGulator

- Joe Grand
- Open source tool to assist with discovery of on-chip program/debug interfaces
- Currently detects JTAG & UART/asynchronous serial
- Supports up to 24 connections to unknown points on target circuit board, adjustable target voltage (1.2V-3.3V), input protection, firmware upgradable
- www.jtagulator.com
Facedancer

• Travis Goodspeed
• Emulate USB devices for host-based testing/fuzzing/analysis
 – http://goodfet.sourceforge.net/hardware/facedancer21/

```
# Finds devices supported by the OS
$ python3 umap.py -P /dev/ttyUSB3 -i
# Fuzz a HID device class
$ python3 umap.py -P /dev/ttyUSB3 -f 03:00:00:C
# Try to identify the operating system
$ python3 umap.py -P /dev/ttyUSB3 -O
# Run a single fuzz test case
$ python3 umap.py -P /dev/ttyUSB3 -s 03:00:00:C:16
```

Die Datenkrake

- Dmitry Nedospasov & Thorsten Schroeder
- Low cost, open source development & attack platform
 - ARM Cortex-M3 + FPGA
- Fuzzing, glitching, protocol analysis
- Requires off-the-shelf IDEs for FW & FPGA development
- Creation of tools/examples on-going

- www.datenkrake.org
- https://github.com/ddk/
RF Tools (Software Defined Radio)

- Hack RF
 - Michael Ossmann
 - http://greatscottgadgets.com/hackrf/

- Blade RF
 - http://nuand.com

- Ubertooth One (2.4GHz/Bluetooth)
 - Michael Ossmann
 - http://greatscottgadgets.com/ubertoothone/

- RFIDler (RFID Reader/Writer/Emulator)
 - Adam Laurie aka Major Malfunction
Imaging
Acoustic Microscopy

• Target placed into bath of DI water or alcohol
 – Serves as liquid coupling medium to transfer sound waves to target
• Ultrasound emitted into target (15-300MHz)
• Return echoes are captured (reflection)
• Transmission through the target is measured (thru scan)
Acoustic Microscopy 2

- Typically used for non-destructive failure analysis & reliability testing/verification of ICs, components, packaging, wafers
 - Can identify air gaps/voids, delamination, cracks/mechanical stress, counterfeits
- We can use it for examining through epoxy encapsulation
 - Identify key components, connections, or locations
X-Ray (2D)

- X-rays passed through target and received on detector
 - All materials absorb radiation differently depending on density, atomic number, and thickness
- Provides a composite image of all layers in target

http://datest.com/resources-boardtestmeth-primer2d3d.php
X-Ray (2D) 2

- Typically used during PCB assembly (component placement/solder quality) or failure analysis (troubleshooting defective features)
- We can use it for general PCB inspection and examining through epoxy encapsulation
 - Can get clues of PCB fabrication techniques, component location, layer count, hidden/embedded features

20-pin uBGA (CSP3)
X-Ray (3D/CT)

- **Computed Tomography (CT)**
 - A series of 2D X-ray images post-processed to create cross-sectional slices of the target
 - X-ray beam rotated 360° in a single axis around the target

- **Acquisition**
 - Capture a series of 2D X-ray images (60-720 depending on desired resolution)

- **Reconstruction**
 - Post-processing results in 2D slices that can be viewed in any plane (X, Y, Z)
 - Can be manipulated with 3D modeling software

http://datest.com/resources-brochures.php
X-Ray (3D/CT) 2

- Typically used for complex inspection and failure analysis of PCBs, component packaging, solder ball/joint quality
- We can use it to extract individual layers of a PCB
 - Results may vary based on layer count, inter-layer thickness, copper weight, substrate composition
The End.