
WiFuzz: Detecting and

Exploiting Logical Flaws in the

Wi-Fi Cryptographic Handshake

Mathy Vanhoef - @vanhoefm

imec-DistriNet, KU Leuven

Black Hat, 27 July 2017

Introduction

More and more Wi-Fi network use encryption:

2Most rely on the Wi-Fi handshake to generate session keys

2010

How secure is the Wi-Fi handshake?

Design: formally analyzed and proven correct (CCS 2005)

Security of implementations?

 Some works fuzz network discovery stage

 Many stages are not tested, e.g. 4-way handshake.

 But do not tests for logical implementation bugs

3

 Objective: test implementations of the full Wi-Fi

handshake for logical vulnerabilities

1 C. He, M. Sundararajan, A. Datta, A Derek, and J. Mitchell. A modular correctness proof of IEEE 802.11i and TLS.
2 M. Vanhoef, D. Schepers, and F. Piessens. Discovering Logical Vulnerabilities in theWi-Fi Handshake Using Model-Based Testing.

Background: the Wi-Fi handshake

Main purposes:

 Network discovery

 Mutual authentication & negotiation of pairwise session keys

 Securely select cipher to encrypt data frames

4

WPA-TKIP

Short-term solution that sacrificed

some security, so it could run on

old WEP-compatible hardware

AES-CCMP

Long-term solution based on

modern cryptographic primitives

Wi-Fi handshake (simplified)

5

Wi-Fi handshake (simplified)

6

Wi-Fi handshake (simplified)

7

Wi-Fi handshake (simplified)

8

Defined using

EAPOL frames

EAPOL frame layout (simplified)

9

MICkey infoheader replay counter … key data

P M I S E R C A key version

MD5/RC4

or

SHA1/AES

key info flags

≈ message ID

How to test implementations?

 Test if program behaves according to some abstract model

 Proved successful against TLS

 Apply model-based approach on the Wi-Fi handshake

10

Model-based testing!

Test generation rules:

(in)correct modifications

Model-based testing: our approach

11

Model: normal

handshake

Set of test

cases

A test case defines:

1. Messages to send & expected replies

2. Results in successful connection?

Generation rules:

 Can test various edge cases, allows some creativity

 Are assumed to be independent (avoid state explosion)

Executing test cases

12

Execute test case

Check if connection

successful

unexpected result

For every test case

unexpected reply

Save failed test

Reset
All OK

Afterwards Inspect failed test cases

 Experts determines impact and exploitability

Test generation rules

Test generation rules manipulating messages as a whole:

1. Drop a message

2. Inject/repeat a message

Test generation rules that modify fields in messages:

1. Wrong selected cipher suite in message 2

2. Bad EAPOL replay counter

3. Bad EAPOL key info flags (used to identify message)

4. Bad EAPOL key version (switch SHA1/AES with MD5/RC4)

5. Bad EAPOL Message Integrity Check (MIC)

6. …
13

Evaluation

We tested 12 access points:

 Open source: OpenBSD, Linux’s Hostapd

 Leaked source: Broadcom, MediaTek (home routers)

 Closed source: Windows, Apple, Telenet

 Professional equipment: Aerohive, Aironet

14

Discovered several issues!

Missing downgrade checks

1. MediaTek & Telenet don’t verify selected cipher in message 2

2. MediaTek also ignores supported ciphers in message 3

15 MediaTek clients can be trivially downgraded

Windows 7 targeted DoS

16

APClient Client 2

…

Windows 7 targeted DoS

17

APClient Client 2

…

PoC & Demo
github.com/vanhoefm/blackhat17-pocs

Broadcom downgrade

Broadcom cannot distinguish message 2 and 4

 Can be abused to downgrade the AP to TKIP

Hence message 4 is essential in preventing downgrade attacks

 This highlights incorrect claims in the 802.11 standard:

18

“While Message 4 serves no cryptographic purpose, it serves as an

acknowledgment to Message 3. It is required to ensure reliability and

to inform the Authenticator that the Supplicant has installed the PTK and

GTK and hence can receive encrypted frames.”

OpenBSD: DoS against AP

Two bugs in OpenBSD:

1. TKIP countermeasures are never stopped

 TKIP is weak: detects frame forging attempts

 Possible forge attempt send MIC failure report to AP

2. MIC failure report accepted before 4-way handshake

Combined: unauthenticated permanent DoS
19

If (two MIC failure reports within a minute)

halt all traffic for 1 minute forever

OpenBSD: DoS against AP

20

OpenBSD: DoS against AP

21

PoC & Demo
github.com/vanhoefm/blackhat17-pocs

OpenBSD: client man-in-the-middle

Manual inspection of OpenBSD client.

State machine missing! Attack possible:

1. Rouge AP: skip 4-way handshake, send Group Message 1

2. Client verifies authenticity of message using all-zero key

3. Message accepted, client now allows normal data traffic

Proof of concept and demo!

22

OpenBSD: client man-in-the-middle

23

OpenBSD: client man-in-the-middle

24

PoC & Demo
github.com/vanhoefm/blackhat17-pocs

Other results: see white paper!

 Fingerprinting techniques!

 Permanent DoS attack against
Broadcom

 DoS attack against Windows 10,
Broadcom, Aerohive

 Inconsistent parsing of selected
and supported cipher suite(s)

 …

25

Technique (Dis)advantages & Limitations

General remaks:

 Black-box testing mechanism: no source code needed

 Fairly simple handshake, but still several logical bugs!

o But time consuming to implement & requires an expert

Limitations:

 Amount of code coverage is unknown

 Only used well-formed (albeit invalid) packets

 Test generation rules applied independently

 Only tested Access Points (not clients)
26

Conclusion

Wi-Fi implementations are less secure than expected

 New attacks (will) keep popping up

Need more advanced tools to detect logical flaws

 Current testing framework is quite basic

 Complex bugs currently remain undetected

27

WiFuzz: Detecting and

Exploiting Logical Flaws in the

Wi-Fi Cryptographic Handshake

Mathy Vanhoef - @vanhoefm
imec-DistriNet, KU Leuven

Questions?

