WiFuzz: Detecting and
Exploiting Logical Flaws in the

Wi-Fi Cryptographic Handshake

Mathy Vanhoef - @vanhoefm
Imec-DistriNet, KU Leuven
Black Hat, 27 July 2017

I DistriNet

Introduction

More and more WI-FI network use encryption:

2017/03/31:
Unencrypted 1611
Unknown: 19.94
Encrypted: 74.07
WEP:9.17
WPA:7.51

WPAZ2: 57 4

2010

["}‘\ .__!’" /
P
‘\1\1'

000

Most rely on the Wi-FI handshake to generate session keys

How secure is the Wi-Fi handshake?
Design: formally analyzed and proven correct (CCS 2005)

Security of implementations?
Some works fuzz network discovery stage
Many stages are not tested, e.g. 4-way handshake.
But do not tests for logical implementation bugs

- Objective: test implementations of the full Wi-Fi
handshake for logical vulnerabilities

1 C. He, M. Sundararajan, A. Datta, A Derek, and J. Mitchell. A modular correctness proof of IEEE 802.11i and TLS. 3
2 M. Vanhoef, D. Schepers, and F. Piessens. Discovering Logical Vulnerabilities in theWi-Fi Handshake Using Model-Based Testing.

Background: the Wi-Fi handshake

Main purposes:
= Network discovery
= Mutual authentication & negotiation of pairwise session keys

= Securely select|cipher to encrypt data frames

WPA-TKIP AES-CCMP
Short-term solution that sacrificed Long-term solution based on
some security, so it could run on modern cryptographic primitives

old WEP-compatible hardware

Wi-Fi handshake (simplified)

|

Client

Access Point

Beacons: supported ciphers

[Select cipher]

Association Request: chosen cipher

Wi-Fi handshake (simplified)

Client

Beacons: supported ciphers

Access Point (((o)

[Select cipher]

Association Request: chosen cipher

Msgl: ANonce

[Session keys}

Msg2: SNonce + chosen cipher

[Session kest

Wi-Fi handshake (simplified)

Client

Beacons: supported ciphers

Access Point (((.)))

[Select cipher]

Association Request: chosen cipher

Msgl: ANonce

[Session keys]

Msg?2: SNonce + chosen cipher

Msg3: supported ciphers

[Session keys]

[verify chosen cipher]

[verify supported ciphers}

Msg4: ACK

Wi-Fi handshake (simplified)

|

Client

Access Point

Beacons: supported ciphers

[Select cipher]

Association Request: chosen cipher

[Session keys]

Defined using @
EAPOL frames @

1)
imblifie
Iayout (slmp
e
fram
OL
EAP

dat
rel y

" fo

key i

hea :

...

—
—

4
/RC
MD5

or
info flags 1/AES
nfo A
~m

How to test implementations?

Model-based testing!

= Test If program behaves according to some abstract model
= Proved successful against TLS

» Apply model-based approach on the Wi-Fi handshake

10

Model-based testing: our approach

Model: normal Set of test

handshake Test generation rules: cases
(in)correct modifications

A test case defines:

1. Messages to send & expected replies
7. Results in successful connection?

Generation rules:

= Can test various edge cases, allows some creativity
= Are assumed to be independent (avoid state explosion)

11

Executing test cases

unexpected reply

-
1

1

i Execute test case

I

1

i Check if connection unexpected result s
I

1

1

1

1

1

1

1

ave failed test
successful

Reset

Afterwards Inspect failed test cases
= Experts determines impact and exploitability

12

Test generation rules

Test generation rules manipulating messages as a whole:
1. Drop a message
7. Inject/repeat a message

Test generation rules that modify fields in messages:

o0k wWhE

Bad EA
Bad EA
Bad EA
Bad EA

PO
PO
PO

PO

. Wrong selected cipher suite in message 2

_ replay counter
_ key info flags (used to identify message)
_ key version (switch SHA1/AES with MD5/RC4)

_ Message Integrity Check (MIC)

13

We tested 12 access points:

= Open source: OpenBSD, Linux’'s Hostapd

= Leaked source: Broadcom, MediaTek (home routers)
= Closed source: Windows, Apple, Telenet

= Professional equipment' Aerohive, Aironet

- . NlcE H

Discovered several Issues!

B

'av',

A ;
- 3
= <

i
g
=

14

Missing downgrade checks

1. MediaTek & Telenet don't verify selected cipher in message 2
7. MediaTek also ignores supported ciphers in message 3

Client Access Point
|< Msgl: ANonce
[Sessmn kest Msg2: SNonce + chosen cipher

7

[Session keysw

Msg3: supported ciphers m‘ e

- MediaTek clients can be trivially downgraded 15

Windows 7 targeted DoS
Cl
Illent AP Cli
lent 2

X

ASSOCi .
ation Re
ASS quest

W

A

SSOCiatiO
W
Association Rejected
Association Request

—— Mot

| | |]
16

Windows 7 targeted DoS
Clilent AP Client 2

AQQI\A:-L' I I

PoC & Demo

github.com/vanhoefm/blackhatl7-pocs

“ ‘W’

Broadcom downgrade

Broadcom cannot distinguish message 2 and 4 ’\
= Can be abused to downgrade the AP to TKIP EROADCOM.

Hence message 4 is essential in preventing downgrade attacks
= This highlights incorrect claims in the 802.11 standard.:

“While Message 4 serves no cryptographic purpose
It IS required to ensure reliability

18

OpenBSD: DoS against AP

Two bugs in OpenBSD:
1. TKIP countermeasures are never stopped

= TKIP is weak: detects frame forging attempts
= Possible forge attempt - send MIC failure report to AP

L 0 If (two MIC failure reports within a minute)
m | halt all traffic IO =ratie forever

7. MIC failure report accepted before 4-way handshake

Combined: unauthenticated permanent DoS

19

OpenBSD: DoS against AP

Adversary (client) Authenticator (AP)
Beacons with network info ((®))

[Select network} ‘
D Association Request

EAPOL-Key(Msg1, ANonce)

EAPOL-Key(MIC-Failure-Report, MIC)
[Verify with all-zero PTKJ

®< EAPOL-Key(MIC-Failure-Report, MIC) .
[Verify with all-zero PTK

[Start TKIP Countermeasures

20

OpenBSD: DoS against AP

Adversary (client) Authenticator (AP)
[¢ Beacons with network info ((:)

PoC & Demo

github.com/vanhoefm/blackhatl7-pocs

‘ [Start TKIP Countermeasuresj

21

OpenBSD: client man-in-the-middle

Manual inspection of OpenBSD client.

State machine missing! Attack possible:

1. Rouge AP: skip 4-way handshake, send Group Message 1
7. Client verifies authenticity of message using all-zero key
3. Message accepted, client now allows normal data traffic

Proof of concept and demo!

22

OpenBSD: client man-in-the-middle

Victim (client) Adversary (Rogue AP)

Beacons with network info

@) [Select networkj

Association Request

EAPOL-Key(Group1, MIC; Encrypted{GTK})

[Verify with all-zero PTK]

EAPOL-Key(Group2, MIC)

[Open 802.1x port]

L - - - Victim sends and accepts plaintext data frames - - - ->

23

OpenBSD: client man-in-the-middle

l Victim (client) Adversary (Rogue AP) (((.)))
(‘ Beacons with network info ‘ ‘
)

github.com/vanhoefm/blackhatl7-pocs

{[Open 802.1x port]

L - - - Victim sends and accepts plaintext data frames - - - -> 24

Other results: see white paper!

.
\
I “EBE s M“HEIII
memegenerator.net

Fingerprinting techniques!

Permanent DoS attack against
Broadcom

DoS attack against Windows 10,
Broadcom, Aerohive

Inconsistent parsing of selected
and supported cipher suite(s)

25

Technique (Dis)advantages & Limitations

General remaks:

Black-box testing mechanism: no source code needed
Fairly simple handshake, but still several logical bugs!
But time consuming to implement & requires an expert

Limitations:
Amount of code coverage is unknown
Only used well-formed (albelit invalid) packets

Test generation rules applied independently
Only tested Access Points (not clients)

26

WiI-FI implementations are less secure than expected
= New attacks (will) keep popping up

Need more advanced tools to detect logical flaws

= Current testing framework is quite basic
= Complex bugs currently remain undetected

27

WiFuzz: Detecting and
Exploiting Logical Flaws iIn the

Wi-Fi Cryptographic Handshake

Mathy Vanhoef - @vanhoefm
Imec-DistriNet, KU Leuven

Questions?

DistriNet

