
WiFuzz: detecting and exploiting logical flaws

in the Wi-Fi cryptographic handshake

Mathy Vanhoef

imec-DistriNet1

mathy.vanhoef@cs.kuleuven.be

Encrypted Wi-Fi networks are increasingly popular. This is highlighted by new standards

such as Hotspot 2.0 and Opportunistic Wireless Encryption. Hotspot 2.0 streamlines net-

work discovery and selection, creating an authenticated roaming experience matching that

of cellular phones. On the other hand, Opportunistic Wireless Encryption introduces unau-

thenticated encryption for Wi-Fi networks. However, these advancements are meaningless if

there are implementation flaws in the 4-way Wi-Fi handshake that negotiates fresh session

keys. In this report, we show how to detect and abuse logical flaws in implementations of

this handshake.

Our goal is not to detect common programming errors such as buffer overflows or double

frees, but to detect logical vulnerabilities. An example of a logical vulnerability is that some

message(s) in a handshake can be skipped, causing it to use or negotiate an uninitialized

(all-zero) cryptographic key. Clearly such vulnerabilities void all security guarantees. To

detect these types of logical vulnerabilities, we first build a model of the Wi-Fi handshake

that describes the expected behavior of an implementation. We then automatically generate

invalid executions of the handshake, and check whether an implementation correctly reacts

to these invalid executions.

We tested 12 Wi-Fi access points, and found irregularities in all of them. These consist of au-

thentication bypasses, fingerprinting techniques, downgrade attacks, denial-of-service (DoS)

attacks, and so on. Most prominently, we discovered two critical vulnerabilities in OpenBSD.

The first can be abused as a DoS against the AP, and the second can be exploited to perform

a man-in-the-middle attack against WPA1 and WPA2 clients. We also discovered downgrade

attacks against MediaTek and Broadcom that force usage of TKIP and RC4. Additionally, we

discovered a targeted DoS against Windows 7. We also found other irregularities in Airohive,

Apple, Cisco, hostapd, and Windows 10.

1This report is primarily based on a paper co-authored with Domien Schepers and Frank Piessens [26],
and on some novel research results. It is also based on paper co-authored with Frank Piessens [25]. All

work was performed at the imec-DistriNet group of KU Leuven.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 2 of 22

1 Introduction
More and more systems are using Wi-Fi to connect to the internet. Given the broadcast

nature of these wireless transmissions, it is essential that this traffic is properly protected.

The de facto method for this is Wi-Fi Protected Access 2 (WPA2) [1]. Interestingly, even

upcoming standards such as Hotspot 2.0 and Opportunistic Wireless Encryption, rely

on features of WPA2. Here, Hotspot 2.0 streamlines network discovery and selection,

creating an authenticated roaming experience matching that of cellular phones. On the

other hand, Opportunistic Wireless Encryption introduces unauthenticated encryption for

Wi-Fi networks. All these encrypted networks rely on the Wi-Fi handshake to securely

negotiate fresh pairwise keys. Once the handshake has completed, the pairwise keys

are used to encrypt normal traffic. Therefore, a correct and secure implementation of

the Wi-Fi handshake is essential to assure all transmitted data is properly protected.

While there are some works that test Wi-Fi implementations for common programming

mistakes such as memory overflows and use-after-frees, these only test the first stage of

the handshake [18, 7]. Additionally, they are unable to detect logical vulnerabilities. In

contrast, we show how to test various stages of the Wi-Fi handshake for the presence of

logical implementation vulnerabilities.

To systematically test implementations, and detect logical vulnerabilities, we propose a

model-based technique. First, we model the Wi-Fi handshake by defining the sequence

of messages exchanged in a normal handshake (see Section 3). We then define a set of

test generation rules that take this model (i.e., sequence of messages) and generate a set

of invalid or unexpected handshake executions. For example, a test rule may generate

an execution where a required message is skipped, or a message has an invalid integrity

check. If an implementation does not reject such faulty executions, an irregularity has

been detected. We then manually inspect all irregularities to determine whether they

pose a security risk. By defining appropriate test generation rules, we can generate a

representative set of test cases, which explore various edge cases in each stage of the

Wi-Fi handshake.

We tested the 4-way handshake implementation of 12 Access Points (APs) from differ-

ent vendors, and also performed a limited manual inspection of client implementations.

This uncovered irregularities in all implementations, and revealed multiple vulnerabili-

ties. The most serious vulnerability is a man-in-the-middle attack against the OpenBSD

Wi-Fi client, which works against both WPA1 and WPA2. Other notable discoveries are

downgrade attacks against Broadcom and MediaTek-based routers. Here, an adversary

can force usage of WPA-TKIP instead of the more secure AES-CCMP. Also noteworthy

are denial-of-service (DoS) attacks against Windows 7 and OpenBSD. Additionally, we



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 3 of 22

found implementation bugs that, although they do not directly lead to practical attacks,

are concerning. These results are surprising since the Wi-Fi handshake is not that com-

plex, especially in comparison to other protocols such as TLS. In other words, even though

the Wi-Fi handshake is fairly simple, our techniques still were able to detect a substantial

number vulnerabilities.

2 Background

In this section we given a brief overview of existing fuzzing strategies, and give a brief

history of the Wi-Fi Protected Access 2 (WPA2) standard.

2.1 Fuzzing Strategies

Researchers have proposed several techniques to detect vulnerabilities in programs. One

prominent technique is fuzzing, where a program is fed random input, and then mon-

itored to see whether it crashes or hangs. In variants of this approach, grammars are

used to generate properly formatted inputs. This enables encoding of application-specific

knowledge and test heuristics. Another variation is used by the AFL fuzzer, where promis-

ing inputs are detected based on which (previously unreached) code blocks they ex-

plore [27]. While these techniques can be effective and easy to use, they have several

limitations. For example, the conditional statement “if (x==137) then” only has one

in 232 chance of being fulfilled if x is a random 32-bit input value. Hence serious vulner-

abilities may go undiscovered. Symbolic execution overcomes this problem by running

the program not on random concrete inputs, but on symbolic inputs. Now when a condi-

tional statement is encountered, analysis is essentially forked over all feasible branches.

Every fork has a path constraint which records the conditions that the input must sat-

isfy for an execution to reach this location in the program. To determine whether a

branch is feasible, and to generate concrete inputs that follow certain branches, a SAT

or SMT solver is used. Several tools implement this technique, examples are DART [13],
KLEE [8], and SAGE [14]. Symbolic execution has two main limitations. First, certain

queries to the SMT solver can be slow to practically unsolvable. The second problem is a

state explosion when analysing large programs, where there are an exponential number

of execution paths in the program.

While the previous techniques can find common program mistakes, such as buffer over-

flows and double frees, they cannot detect flaws in the application logic of a program. To

detect those, we need a model that defines the expected behaviour of a program. For ex-

ample, Beurdouche et al. first constructed a model of TLS by specifying the order in which



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 4 of 22

packets should be transmitted, i.e., they first defined the state machine of TLS [3]. Then

they tested implementations to see whether their behaviour deviated from this model.

De Ruiter and Poll used a different technique to uncover logical bugs [11]. They first

defined the set of valid TLS packets that can be sent, and then used this to reconstruct

the state machine of an implementation. This state machine then had to be manually

inspected for vulnerabilities.

2.2 History of Wi-Fi Protected Access 2 (WPA2)

Initially, the 802.11 standard provided Wired Equivalent Privacy (WEP) to protect data.

Unfortunately, it contained major design flaws, and is considered completely broken [12,

21, 4]. To address these security issues, the IEEE designed both a short-term and long-

term solution. Their long-term solution is called (AES-)CCMP. It uses AES in counter

mode for encryption, and CBC-MAC for authenticity. Unfortunately, older WEP-compatible

devices were not performant enough to implement CCMP in software using firmware

updates. To solve this problem, the (WPA-)TKIP protocol was designed as a short-term

solution. Similar to WEP, it is based on the RC4 cipher, meaning WEP-capable hardware

could support it using only firmware upgrades.

Due to the slow standardization process of the IEEE, the Wi-Fi Alliance already began

certifying devices based on a draft version of the 802.11i amendment. This certification

program was called Wi-Fi Protected Access (WPA), and required support for TKIP, but

did not mandate support for CCMP. In this paper we will refer to it as WPA1. Unfortu-

nately, this led to the common misunderstanding that WPA1 is synonymous with using

TKIP. Once 802.11i was standardized, the Wi-Fi Alliance started the WPA2 certification

program. This certification requires that a device supports CCMP, but does not mandate

support for TKIP. This led to another common misconception, namely that WPA2 means

(AES-)CCMP is used, while in reality a WPA2 network might still use (or support) TKIP.

Since WPA1 and WPA2 are both based on the 802.11i standard, they are nearly identical

to each other. Therefore, unless mentioned otherwise, we will treat WPA1 as identical

to WPA2. The few differences between them are discussed in Section 3 and in our pa-

per [26]. Finally, we use the term Robust Security Network (RSN) to refer to 802.11i

security mechanisms in general (i.e. it can refer to both TKIP and CCMP).

3 The Wi-Fi Handshake

In this section we present our model of the Wi-Fi handshake, which will be uses as the

basis for our testing technique [26].



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 5 of 22

3.1 Stage 1: Network Discovery
An Access Point (AP) periodically broadcasts beacons to advertise its presence. This is

illustrated in stage 1 of Figure 1. These beacons include the supported link-layer encryp-

tion algorithms (i.e., the supported ciphers) that are supported by the AP. Generally this

is either TKIP and/or CCMP.

Clients can discover networks by passively listening for beacons, or by actively sending

probe requests. This is also illustrated is stage 1 of Figure 1. Both beacons and probe

responses contain the name and capabilities of the wireless network. In particular this

includes the Robust Security Network information Element (RSNE), which defines the

supported pairwise cipher suites of the network, and the group cipher suite that is used.

Note that the cipher suite can be either TKIP or CCMP. Although the bit-wise encoding of

the RSNE differs between WPA1 and WPA2, in both WPA versions the RSNE contains the

same information.

3.2 Stage 2: Authentication and Association
Once the client has found a network to connect to, the actual handshake starts (see

stage 2 of Figure 1). Here the client is called the supplicant, and the access point is

called the authenticator (we treat these terms as synonyms). In principle, authentica-

tion may already happen at this point, but in practice most networks use Open System

authentication. This mechanism allows any client to authenticate. In a WPA or WPA2

network, actual authentication will be performed at stage 4 during the 4-way handshake.

Once “authenticated”, the supplicant sends an association request to the AP. This frame

includes the pairwise cipher that the client wants to use, encoded in an RSNE element.

If the supplicant encodes the RSNE using the conventions of WPA1, the WPA1 variant of

the handshake will be executed. Otherwise, the WPA2 variant will be executed. Because

the AP also uses an RSNE element to advertise its supported list of cipher suites, we will

use the term RSNE-Chosen when the RSNE encodes the chosen cipher suites. The AP

replies with an association response, indicating the association was successful or not.

3.3 Stage 3: 802.1x Authentication
The third stage is optional, and consist of 802.1x authentication to a back-end Authen-

tication Server. For example, this may consist of authentication using a username and

password to a RADIUS server. The end result of this authentication is that the client and

AP share a secret Pairwise Master Key (PMK). Since parts of 802.1x have already been

tested in other works [2, 16, 9, 19, 5], or are based on TLS [6, 3, 11, 20], we do not test

this further in our work. Instead, we simply assume the supplicant and authenticator

derive the PMK from a secret pre-shared key.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 6 of 22

Beacon + RSNE

Probe Request

Probe Response + RSNE

Authentication Request

Authentication Response

(Re)Association Request + RSNE-Chosen

(Re)Association Response

optional 802.1x authentication

EAPOL-Key(Msg1, ANonce)

EAPOL-Key(Msg2, SNonce,

MIC; RSNE-Chosen)

EAPOL-Key(Msg3, ANonce, MIC;

RSNE, Encrypted{GTK})
EAPOL-Key(Msg4, MIC)

Encapsulated{ EAPOL-Key(Group1, MIC; Encrypted{GTK}) }

Encapsulated{ EAPOL-Key(Group2, MIC) }

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

St
ag

e
5

Supplicant Authenticator

PMK PMK

PTK

PTK

Generate or renew GTK

GTK

Figure 1: Frames sent in the 802.11 handshake, including their most important param-

eters [26]. Optional stages or parameters are shown in (dashed) gray.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 7 of 22

Protocol Version

1 byte

Packet Type

1 byte

Body Length

2 bytes

Descriptor Type – 1 byte

Key Information

2 bytes

Key Length

2 bytes

Key Replay Counter – 8 bytes

Key Nonce – 32 bytes

EAPOL Key IV – 16 bytes

Key RSC – 8 bytes

Reserved – 8 bytes

Key MIC – variable

Key Data Length

2 bytes

Key Data

variable

Figure 2: Layout of EAPOL-Key frames [10, §11.6.2].

3.4 Stage 4: The 4-way Handshake

The fourth stage consists of the 4-way handshake, which provides mutual authentication

and negotiates a fresh Pairwise Transient Key (PTK). Additionally, it prevents downgrade

attacks by cryptographically verifying the RSNEs received during the network discov-

ery and association stage. The PTK is derived from the Authenticator Nonce (ANonce),

Supplicant Nonce (SNonce), and the MAC addresses of the client and AP.

Messages in the 4-way handshake are defined using EAPOL-Key frames (see Figure 2).

We will briefly discuss the most important fields. First, the descriptor type determines

the remaining structure of an EAPOL-Key frame. Although WPA1 uses the value 254 for

this field, and WPA2 uses the value 2, both define an identical remainder structure of the

EPAOL-Key frame. Following this 5-byte header is the key information field. It consists of

a 3-bits key descriptor version subfield, and eight (one-bit) flags called the key info flags.

The key descriptor field defines the cipher suite that is used to protect the frame. This

is either AES with HMAC-SHA1, or RC4 with HMAC-MD5. If the client selects CCMP as

the pairwise cipher, this must be AES with SHA1. Otherwise, if the client selects TKIP,

RC4 with MD5 must be used. The replay counter field is used to detect replayed frames.

When the client replies to an EAPOL-Key frame of the AP, it must use the same replay

counter as the one in the previously received EAPOL-Key frame from the AP. The AP

always increments the replay counter after transmitting a frame. Finally, the integrity of

an EAPOL frame is protected using a Message Integrity Check (MIC), and the key data



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 8 of 22

field is encrypted if it contains sensitive data. Recall that the encryption algorithm used

to encrypt the key data field is specified in the key descriptor field.

When using WPA2, the receiver of an EAPOL-Key frame can distinguish among the dif-

ferent messages of the 4-way handshake by inspecting the key info flags. We use the

notation message n to refer to the n-th message of the 4-way handshake. Note that in

Figure 1 we use the following notation:

EAPOL-Key(MsgType, Nonce, MIC; Key Data)

This represents a frame of type MsgType, with the given nonce (if present). When the

MIC parameter is present, the frame is authenticated using a message integrity check.

Finally, all parameters after the semicolon are stored in the key data field (see Figure 2).

The notation Encrypted{GTK} is used to stress that, if the GTK is included, it must be

encrypted using the PTK.

3.4.1 Message 1

The first message of the 4-way handshake stage is sent by the AP, and contains the ran-

domly generated ANonce of the AP. The key info flags that must be set in this message

are Pairwise and Ack, which are represented by the label Msg1. This message is not

protected by a MIC, and hence can be forged by an attacker. When the client receives

this message and learns the ANonce, it posses all information to calculate the PTK.

3.4.2 Message 2

This message contains the random SNonce of the supplicant, and is protected using a

MIC. The key info flags that must be set are Pairwise and MIC, which are represented

by the label Msg2. The Key Data field includes the authenticated RSNE-Chosen element,

which contains the chosen cipher suites previously sent in the (re)association request.

When the AP receives this message, it calculates the PTK, verifies the MIC, and compares

the (authenticated) RSNE-Chosen with the one previously received in the association

request. If they differ, a downgrade attack has been detected, and the handshake is

aborted.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 9 of 22

3.4.3 Message 3

Message 3 is send by the AP, and its required key info flags are Pairwise, MIC, and

Secure. Here the Key Data field includes the RSNE, which contains the supported ci-

pher suites of the AP. Additionally, if WPA2 is used, it also includes the encrypted GTK.

When WPA1 is used, the GTK is sent to the supplicant using a group key handshake (see

Section 3.5). When the client receives this message, it checks that the (authenticated)

RSNE in message 3 is identical to the one received in beacons and probe requests. If they

differ, a downgrade attack was attempted, and the handshake is aborted.

3.4.4 Message 4

The supplicant sends message 4 to the authenticator, to confirm that the handshake has

been successfully completed. This last message is also authenticated using a MIC. When

WPA2 is used, the required key info flags are Pairwise, MIC, and Secure. However,

for WPA1, the required key flags does not include Secure. We use Msg4 to represent the

required key info flags for both WPA versions. Note that message 2 and message 4 have

the same required key info flags if WPA1 is used. The only way to differentiate message 2

and 4 in WPA1 is to see whether there is data present in the key data field. Once the

authenticator received message 4, normal (encrypted) data frames can be transmitted.

3.5 Stage 5: Group Key Handshake

The last stage consists of the group key handshake, and is required when using WPA1. It

transports the group key to the client, which is used to protect broadcast and multicast

traffic. In both WPA1 and WPA2, the group handshake is also periodically executed to

renew the group key. Note that in Figure 1 we use the notation Encapsulated{·} to denote

that the complete EAPOL-Key frame is also protected using either TKIP or CCMP.

4 Our Model-Based Testing Technique

In this section we present our model-based testing technique. We start with a high-level

description, discuss the features and properties of the handshake that will be tested, and

finally explain how the tests are executed in practice [26].



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 10 of 22

4.1 General Approach

Our goal is to perform black-box tests of implementations, and detect logical vulnerabil-

ities in all stages of the handshake. We accomplish this by taking the Wi-Fi handshake

as described in the previous section, and applying several (invalid) modifications to it.

Each modification that can be applied is described by a test generation rule, and results

in a test case that can be executed in a black-box manner.

Every test case is defined by the sequence of messages that must be transmitted to the

AP, and the expected replies. Additionally, it defines whether this exchange of messages

should result in a successful connection or not. For example, skipping a message should

result in a failed connection, whereas retransmitting a message should still result in a

successful connection. To construct a concrete test case, we start from a normal hand-

shake (i.e., the model) as defined in Section 3. Such a normal execution of the handshake

can already be treated as (trivial) test which should always succeed. Note that a normal

handshake can use either WPA1 or WPA2, and negotiates either TKIP or CCMP as the

pairwise cipher. Additional tests are generated by changing such a normal handshake

execution according to a given test generation rule. These rules modify the execution of

the handshake, with as goal to determine how the AP reacts to various (in)valid modifi-

cations of the handshake.

When a generated test case has failed, manual inspection is required to determine the

precise type of bug present in the implementation. Here additional black-box test can be

performed, or the source code can be inspected if it is available. Once the cause of the

bug is identified, we determine whether an adversary can abuse it in an actual attack.

Defining appropriate test generation rules is one of the most critical steps in our test-

ing method. After all, they determine the types of bugs and vulnerabilities that can be

discovered. In this report, our test generation rules are inspired by an analysis of the

Wi-Fi specification, rudimentary code inspections, and already known (and patched) im-

plementation vulnerabilities. Apart from these automated tests, we also briefly reviewed

the source code of implementations that support both a client and an AP mode.

4.2 Test Generation Rules

Our first category of test generation rules manipulate messages as a whole. In particular,

we define two test generation rules in this category:

1. Dropped messages: Generate a set of test cases where each message, together

with its expected responses (if any), is removed.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 11 of 22

2. Injected messages: Generate a set of test cases where each message allowed in a

handshake, together with its expected responses (if any), is inserted before every

message that is normally transmitted.

Our second set of test generation rules change (implicit) parameters of handshake mes-

sages. In particular, we came up with the following set of rules:

3. Invalid RSNE (cipher suite): Generate test cases where the association request

and message 2 have a modified RSNE. This test covers all possible cipher suite com-

binations, where valid values for the pairwise cipher are TKIP, CCMP, or TKIP/CCMP.

The group cipher suite is either TKIP or CCMP.

4. Invalid EAPOL-Key descriptor type: Generate test cases where the descriptor type

in each EAPOL-Key frame is switched to an unexpected value. In particular, we

switch value 2 (used by WPA2) with value 254 (used by WPA1), and visa versa.

We also generate test cases with a random value other than 2 and 254.

5. Invalid EAPOL-Key key info flags: Generate test cases that together try all possible

combinations of key info flags. Recall that the eight key flags are: Pairwise,

Install, Ack, MIC, Secure, Error, Requested and Encrypted. This results in

a total of 28 possible combinations for every EAPOL-Key frame in the handshake.

6. Switched EAPOL-Key cipher suite: Generate test cases where each EAPOL-Key

message is protected using an unexpected cipher suite. That is, AES with SHA1 is

replaced by RC4 with MD5, and visa versa (recall Section 3.4).

7. Invalid EAPOL-Key replay counter: Generate test cases where the replay counters

in EAPOL-Key frames are either lower or higher than the expected replay counter.

8. Invalid EAPOL-Key nonce: Generate test cases where a nonce is added to EAPOL-

Key frames that should not be containing a nonce.

9. Invalid EAPOL-Key MIC: Create test cases where each EAPOL-Key frame has an

invalid MIC, with the MIC flag either set or not set in the key info flags.

To prevent an exponential explosion of the number of generated tests, we do not combine

different test generation rules. However, inspired by a DoS attack that poisons the sup-

plicant with a forged ANonce [15], we do combine rule 2 and 8 to obtain the following

test generation rule:

10. Injected Nonce: Inject a forged message 1 or message 2 after, and before, a valid

message 1 or message 2, respectively. This message contains a random nonce and

an invalid MIC, with the MIC flag either set or not set in the key info flags.

Applying the above test generation rules always results in a finite number of test cases.

Apart from rule 8, these are all deterministic test generation rules. This has the advan-

tage that if we can rerun all the test cases, we will obtain the same results. Hence our

technique, in contrast with random fuzzing, creates repeatable results.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 12 of 22

4.3 Executing Test Cases

We implemented a test harness that executes test cases against Access Points (APs). It

transforms each abstract message of a test case into a concrete Wi-Fi frame. For example,

it fills in MAC addresses and nonce values, and encrypts the appropriate fields of the

frame using the current pairwise key. To accomplish this, some state information needs

to be maintained. For instance, upon receipt of message 1, the generated PTK is stored.

To confirm that the AP is still working before executing a text case, we first wait for a

beacon. Additionally, if a deauthentication message is received during the execution of a

test case, we can already conclude the handshake has failed. Finally, timeouts are used

to detect when the AP ignored a frame.

4.4 Validating and Resetting the Connection

After running a test case, we have to determine whether the handshake resulted in a valid

connection or not. This can then be compared to the expected result. For example, some

test generation rules should not negatively impact a handshake execution (e.g. retrans-

mitting messages), while other rules should result in a failed connection (e.g. dropping

messages). Merely listening for deauthentication frames, which are transmitted when

the authenticator aborts an ongoing handshake, is not sufficient. This is because it may

be that, according to the AP, the handshake is not yet completed, meaning it is still waiting

for certain messages.

To verify if a connection was established or not, we send an ARP request to the gateway,

where we request the MAC address of the gateway. Note that the gateway’s IP address

is known by the test harness. If the connection was successful, the gateway will reply to

the sender MAC address of the ARP request. Finally, after executing a test case, we reset

any state at the AP by sending a deauthentication message. This assures that different

test cases do no influence each other.

5 Discovered Attacks

We now present the results of our testing technique, which we used to test 12 differ-

ent APs (see Table 1). First we discuss general vulnerabilities that were discovered in

several devices, and then we list device-specific vulnerabilities. Note that in this report

the focus is on exploitable vulnerabilities, other findings can be found in [26]. Proof-of-

concepts of selected attacks are available online [23].



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 13 of 22

Table 1: Implementations that were tested for logical vulnerabilities.
Impl. Name Version Hardware

Broadcom 5.10.56.46 RT-N10

Broadcom 5.10.85.0 WAG320N

Hostapd 2.6 TL-WN722N

OpenBSD 6.0 generic 2148 WL-172

Telenet Ver 30.10.2016 Home gateway

MediaTek 3.0.0.9 RT-AC51U

Windows 7 build 7601 TL-WN722N

Windows 10 build 10240 TL-WN722N

Apple Airport 7.6.7 Time Capsule

Apple macOS 10.12 (Sierra) MacBook Pro

Aerohive Ver 1.11.2016 HiveAP 330

Aironet (Cisco) Ver 1.11.2016 Aironet 1130 AG

5.1 Fingerprinting Mechanisms
Any irregularities in how an AP sends or handles messages can be used to fingerprint

and hence identity the implementation being used. Here, we discovered two fields of

an EAPOL-Key frame that are particularly useful for this purpose: the key info field,

and the descriptor type field. First, most vendors require, or prohibit, different key info

flags in messages received during the Wi-Fi handshake. This unique combination can

form a fingerprint of an implementation. Second, the descriptor type field is supposed to

contain the value 2 if WPA2 is used, and 254 if WPA1 is used. Recall from Section 3 that

in practice these values are equivalent. Nevertheless, not all implementations treat these

values as being identical. Some require that the value matches the type of handshake

being executed, some allow both values, and even others allow any byte value. This can

be used to identify a specific implementation.

In order to fingerprint APs based on the key info field or descriptor type field, we must

be able to execute a (partial) Wi-Fi handshake with the AP. This is only possible when

possessing the necessary credentials to the network. We do not consider this a significant

limitation. For example, in an enterprise network such as eduroam, devices may have

access to the network, but they are not considered trusted. In other words, there are

indeed situations where an adversary can execute a Wi-Fi handshake with a targeted AP.

5.2 Impossible TKIP Countermeasures DoS
Several APs incorrectly implement the TKIP countermeasure procedure. This procedure

is a defense mechanism designed to mitigate weaknesses in TKIP. Simplified, it is acti-



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 14 of 22

vated when the AP receives two MIC failure reports, after which no client can connect to

the network for one minute. We discovered several flaws in how MIC failure reports are

handled by implementations. Note that an attacker can cause a client to send a failure

report by capturing a TKIP packet, modifying it, and then injecting the packet [24]. In-

jecting MIC failure reports in a CCMP-only network requires the necessary credentials to

connect to the network.

When a client is not using TKIP, it should not be sending MIC failure reports to the AP. Nev-

ertheless, Broadcom, Windows 10, and Aerohive APs, accept MIC failure reports even if

the client is only using CCMP. This activates the TKIP countermeasures, where the AP dis-

allows new connections for one minute. Hence, an adversary can abuse this as a denial-

of-service attack against a CCMP-only network. We also found that Windows 10 and

OpenBSD permanently block connections once the countermeasure procedure is started.

This results in a permanent DoS attack. Only after restarting the Windows 10 or OpenBSD

AP are connections allowed again.

Strangely, Broadcom’s implementation accepts MIC failure reports, and initiates a new

TKIP countermeasure period, even when an existing TKIP countermeasure period is already
in progress. When abusing this to trigger multiple simultaneous countermeasure periods,

the AP eventually crashes and becomes permanently unresponsive.

5.3 OpenBSD

OpenBSD contains several vulnerabilities in their implementation of the Wi-Fi hand-

shake, and in particular in the 4-way handshake. These lead to two practical attacks,

namely a denial-of-service and a man-in-the-middle attack.

5.3.1 Permanent TKIP countermeasure DoS against the AP

OpenBSD contains two vulnerabilities that, when combined, create an effective DoS at-

tack against the AP. These two vulnerabilities are:

1. OpenBSD does not terminate the TKIP countermeasures after one minute, meaning

the AP will permanently be unusable after it receives two MIC failure reports.

2. OpenBSD accepts TKIP MIC failure reports at any time during the handshake, even

before the client is authenticated, and session keys have been negotiated. On re-

ception of a MIC failure report sent before completion of the 4-way handshake,

the AP will use an all-zero session key to verify the authenticity of the MIC failure

report.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 15 of 22

Adversary (client) Authenticator (AP)

Beacons with network info

Select network

Association Request

EAPOL-Key(Msg1, ANonce)

1©

EAPOL-Key(MIC-Failure-Report, MIC)

Verify with all-zero PTK

EAPOL-Key(MIC-Failure-Report, MIC)

Verify with all-zero PTK

2©

Start TKIP Countermeasures

Clients can no longer connect

Figure 3: Denial-of-Service attack against an OpenBSD AP. Note that MIC failure reports

are EAPOL-Key frames that have the MIC, Error, and Request key info flags set.

This can be exploited by sending two MIC failure reports to the AP, after receiving mes-

sage 1 of the 4-way handshake. These two MIC failure reports are authenticated using

an all-zero session key. The OpenBSD AP will accept these frames, and will start the

TKIP countermeasures. As a result, the AP becomes permanently unusable. Hence an

adversary can easily take down an OpenBSD AP, where connectivity can only be restored

by restarting the AP. Note that an adversary does not require any credentials to execute

this attack. Figure 3 illustrates the attack. The first stage corresponds a normal execution

of the handshake, but at stage two the adversary (unexpectedly) sends two MIC failure

reports.

5.3.2 Man-in-the-Middle Attack

Surprisingly, manually inspecting the OpenBSD source code revealed that its Wi-Fi client

implementation does not contain a state machine. Put differently, it’s not checked whether

handshake messages (and EAPOL-Key messages in general) are being received in their

proper (normal) order. This means that if an adversary would send an unexpected mes-

sage to the client, OpenBSD will try to process it, instead of ignoring it.

Figure 4 shows how an adversary can abuse this vulnerability by setting up a rogue AP,

and performing a man-in-the-middle attack against a victim. In the first stage of the



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 16 of 22

Victim (client) Adversary (Rogue AP)

Beacons with network info

Select network

Association Request

EAPOL-Key(Group1, MIC; Encrypted{GTK})

Verify with all-zero PTK

1©

EAPOL-Key(Group2, MIC)

Open 802.1x port

2©

Victim sends and accepts plaintext data frames

Figure 4: Man-in-the-middle attack against OpenBSD by setting up a rogue AP.

attack, the Wi-Fi handshake is executed normally. However, in stage 2 of the attack,

instead of sending the first message of the 4-way handshake, the adversary sends a Group

Message 1. Due to the missing state machine of the OpenBSD client, it will accept and

process the Group Message 1. Here, the client will try to verify the message integrity

check (MIC) of this frame using an all-zero session key. Naturally, the adversary can easily

forge this MIC. As a result, the client replies using Group Message 2, and will then open

the 802.1x port. Opening this port means the client starts accepting and transmitting

data frames. Because no session key (PTK) was installed before opening this port, the

client will transmit (and accept) plaintext frames. Note that the rogue AP was never

authenticated, since we skipped the 4-way handshake.

5.4 Broadcom: Downgrade Attack by Forging Message 4

We discovered that Broadcom cannot distinguish message 2 and message 4 of the 4-way

handshake when using WPA1. This is because, in the WPA1 variant of the 4-way hand-

shake, both these messages have the same key info flags that must be set (recall Sec-

tion 3). The only difference between them is that message 2 includes data in the key

data field of the EAPOL-Key frame, while message 4 does not. However, when using

WPA1, Broadcom does not check for this difference.

5.4.1 Downgrade Attack

We can abuse this flaw to trick the AP into using TKIP as follows. First, the adversary

sets up a rogue AP that acts as a man-in-the-middle between the client and AP (see



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 17 of 22

Supplicant Adversary (MitM) Authenticator

Advertise TKIP
Advertise

TKIP/CCMP
Associate with TKIP as pairwise cipher

Message 1/4 Message 1/4

Message 2/4 Message 2/4

Message 3/4

Message 1/4

Message 2/4 Message 2/4

Failed 4-way HS Successful 4-way HS

Figure 5: Downgrading a Broadcom authenticator to TKIP, when both TKIP and CCMP is

enabled. The attack only works against WPA1, since Broadcom only confuses message 2

and 4 in WPA1.

Figure 5). She modifies all beacons and probe responses, so it appears that the network

only supports TKIP. As a result, the client will connect to the AP and request TKIP as the

pairwise cipher. At this point the adversary will forward message 1 and 2 of the 4-way

handshake without modification. However, it will block message 3, assuring that the

supplicant never sees this message. Blocking this message is essential since it contains

the real RSNE (supported cipher list) of the AP, which includes both TKIP and CCMP. This

RSNE differs from the one that the adversary advertised in beacon and probe requests.

The client would abort the handshake if this difference is detected.

The adversary now induces the client into retransmitting a valid message 2, by forg-

ing an unauthenticated message 1. When the client receives the forged message 1, it

transmits a new message 2. The retransmitted message 2 is forwarded to the AP, which

will be wrongly treated as being a (valid) message 4. The AP now thinks the 4-way

handshake has been successful, and installs the session keys to enable transmission of

normal (encrypted) traffic. In particular, it will transmit the first message of the group

key handshake, and encrypt it using TKIP. Note that the client will ignore this group key

message, because it never received message 3 of the 4-way handshake. Nevertheless, it

is problematic that the AP is using TKIP.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 18 of 22

Figure 6: Graphical illustration of a channel-based MitM attack.

5.4.2 Discussion

Strangely, based on the 802.11 standard, the ability to forge message 4 should not intro-

duce practical attacks. More precisely, the 802.11 standard states that message 4 is only

required for reliability and not security [17, §11.6.6.8]:

“While Message 4 serves no cryptographic purpose, it serves as an acknowledgment

to Message 3. It is required to ensure reliability and to inform the authenticator that

the supplicant has installed the PTK [..]”

However, our attack against Broadcom shows that message 4 is essential in preventing

downgrade attacks against the 4-way handshake.

In order to execute the attack in practice, the adversary must obtain a MitM position

between the client and AP. This is not possible using a rogue AP with a MAC address dif-

ferent from the real AP, because the negotiated session keys are tied to the MAC addresses

of the client and AP. Our solution is to use a channel-based MitM attack, where the adver-

sary clones the AP on a different channel [25]. Figure 6 illustrates such a channel-based

MitM attack. With this approach, we are sure clients will never directly communicate

with the real AP. Additionally, bot the client and AP will generate the same session key,

meaning message 2 will have a valid MIC when processed by the real AP.

5.5 MediaTek

We observed that MediaTek does not verify the RSNE in both message 2 and 3 of the

4-way handshake. Therefore, a MediaTek client can be downgraded into using WPA-TKIP



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 19 of 22

instead of AES-CCMP. This enables an adversary to exploit weaknesses in WPA-TKIP, ex-

amples attacks being those in [22] and [24]. We consider this especially problematic

because MediaTek’s client functionality is used to extend the range of another AP. Conse-

quently, during an attack the traffic of all devices connected to the MediaTek router will

be forwarded over a connection that has been downgraded to TKIP.

MediaTek is also affected by a DoS attack that poisons the AP with an invalid SNonce.

In particular, an adversary can inject a message 2 with a random nonce and invalid MIC,

right after the client transmitted the real message 2. In response to this message, the

MediaTek AP will generate, and store, a new session key derived from the forged SNonce.

This causes the handshake between the real client and AP to time out and fail.

5.6 Windows

Against Windows 7 we discovered an unauthenticated targeted DoS attack that perma-

nently prevents a specific client from connecting to the network. To execute the attack, an

adversary has to send two association requests right after one another, with as sending

MAC address the targeted victim. After this, the victim can no longer connect to the net-

work. In contrast to our other DoS attack, this one allows an adversary to block specific
MAC addresses from connecting to the network.

Finally, recall from Section 5.2 that Windows 10 is vulnerable to our impossible TKIP

countermeasure attack. Against Windows 10, this even results in a permanent DoS.

5.7 Aerohive

As mentioned in Section 5.2, we found that a client can trigger the TKIP countermeasures

even though the network is only using CCMP. This enables an adversary, which posses the

credentials to access the network, to take down the complete network by injecting two

MIC failure reports every minute.

5.8 Hostapd

No vulnerability in the latest version of hostapd was discovered. Nevertheless, our im-

possible TKIP countermeasure attack of Section 5.2 affects hostapd v0.7.2 and earlier.

Additionally, we observed that hostapd instantly deauthenticates the client if WPA1 is

used and message 2 has the Secure bit set. Other APs would either accept this message,

or silently ignore it. This unique behaviour of hostapd can be used to fingerprint and

identify the implementation.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 20 of 22

6 Conclusion

Our model-based testing technique discovered several logical bugs in implementations

of the Wi-Fi handshake. Moreover, a substantial amount of these bugs are exploitable.

Proof-of-concepts of selected attacks are available online [23]. Most prominently, the

OpenBSD client was missing the state machine of the 4-way handshake, leading to a

trivial man-in-the-middle attack against it. We consider these findings surprising, as the

Wi-Fi handshake is fairly simple. Given these results, an interesting future research di-

rection is to develop more powerful tools to (semi-)automatically detect logical vulnera-

bilities in implementations of network protocols.

References

[1] WiGLE: WiFi encryption over time. Retrieved 23 October 2016 from https://
wigle.net/enc-large.html.

[2] Nadarajah Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-in-the-middle in tun-

nelled authentication protocols. In SPW, 2003.

[3] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric

Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim

Zinzindohoue. A messy state of the union: Taming the composite state machines

of TLS. In IEEE SP, 2015.

[4] Andrea Bittau, Mark Handley, and Joshua Lackey. The final nail in WEP’s coffin. In

IEEE SP, 2006.

[5] Sebastian Brenza, Andre Pawlowski, and Christina Pöpper. A practical investigation

of identity theft vulnerabilities in eduroam. In WiSec, 2015.

[6] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly

Shmatikov. Using frankencerts for automated adversarial testing of certificate vali-

dation in SSL/TLS implementations. In IEEE SP, 2014.

[7] Laurent Butti and Julien Tinnes. Discovering and exploiting 802.11 wireless driver

vulnerabilities. Journal in Computer Virology, 4(1):25–37, 2008.

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and au-

tomatic generation of high-coverage tests for complex systems programs. In OSDI,
2008.

https://wigle.net/enc-large.html
https://wigle.net/enc-large.html


WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 21 of 22

[9] Aldo Cassola, William Robertson, Engin Kirda, and Guevara Noubir. A practical,

targeted, and stealthy attack against WPA enterprise authentication. In NDSS, 2013.

[10] IEEE 802 LAN/MAN Standards Committee et al. Wireless LAN medium access con-

trol (MAC) and physical layer (PHY) specifications. IEEE Standard, 2012.

[11] Joeri De Ruiter and Erik Poll. Protocol state fuzzing of TLS implementations. In

USENIX Security, 2015.

[12] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key scheduling

algorithm of RC4. In SAC, Lecture Notes in Computer Science, 2001.

[13] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated ran-

dom testing. In PLDI, 2005.

[14] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox

fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[15] Changhua He and John C Mitchell. Analysis of the 802.11 i 4-Way handshake. In

Proceedings of the 3rd ACM workshop on Wireless security (WiSE), 2004.

[16] Hyunuk Hwang, Gyeok Jung, Kiwook Sohn, and Sangseo Park. A study on MITM

(man in the middle) vulnerability in wireless network using 802.1x and EAP. In

ICISS, 2008.

[17] IEEE Std 802.11-2012. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Spec, 2012.

[18] Manuel Mendonça and Nuno Neves. Fuzzing Wi-Fi drivers to locate security vul-

nerabilities. In EDCC, 2008.

[19] Pieter Robyns, Bram Bonné, Peter Quax, and Wim Lamotte. Short paper: exploiting

WPA2-enterprise vendor implementation weaknesses through challenge response

oracles. In WiSec, 2014.

[20] Juraj Somorovsky. Systematic fuzzing and testing of TLS libraries. In CCS, 2016.

[21] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. A key recovery attack on

the 802.11b wired equivalent privacy protocol (WEP). TISSEC, 2004.

[22] Erik Tews and Martin Beck. Practical attacks against WEP and WPA. In WiSec, 2009.



WiFuzz: detecting and exploiting logical flaws in the Wi-Fi handshake page 22 of 22

[23] Mathy Vanhoef. Proof of concepts of attacks against wi-fi implementations. Last

retrieved 17 July 2017 from https://github.com/vanhoefm/blackhat17-
pocs.

[24] Mathy Vanhoef and Frank Piessens. Practical verification of WPA-TKIP vulnerabili-

ties. In ASIA CCS, pages 427–436. ACM, 2013.

[25] Mathy Vanhoef and Frank Piessens. Advanced Wi-Fi attacks using commodity hard-

ware. In ACSAC, 2014.

[26] Mathy Vanhoef, Domien Schepers, and Frank Piessens. Discovering logical vulner-

abilities in the Wi-Fi handshake using model-based testing. In ASIA CCS. ACM,

2017.

[27] Michal Zalewsk. American fuzzy lop fuzzer. Retrieved from lcamtuf.coredump.
cx/afl/.

https://github.com/vanhoefm/blackhat17-pocs
https://github.com/vanhoefm/blackhat17-pocs
lcamtuf.coredump.cx/afl/
lcamtuf.coredump.cx/afl/

	Introduction
	Background
	Fuzzing Strategies
	History of Wi-Fi Protected Access 2 (WPA2)

	The Wi-Fi Handshake
	Stage 1: Network Discovery
	Stage 2: Authentication and Association
	Stage 3: 802.1x Authentication
	Stage 4: The 4-way Handshake
	Message 1
	Message 2
	Message 3
	Message 4

	Stage 5: Group Key Handshake

	Our Model-Based Testing Technique
	General Approach
	Test Generation Rules
	Executing Test Cases
	Validating and Resetting the Connection

	Discovered Attacks
	Fingerprinting Mechanisms
	Impossible TKIP Countermeasures DoS
	OpenBSD
	Permanent TKIP countermeasure DoS against the AP
	Man-in-the-Middle Attack

	Broadcom: Downgrade Attack by Forging Message 4
	Downgrade Attack
	Discussion

	MediaTek
	Windows
	Aerohive
	Hostapd

	Conclusion

