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About this talk

• This talk describes early research into a physical attack on DRAM 
memory

• We describe hardware design and protocol limitations

• If successful, the result is full access to all physical memory

• Applicable to all memories which follow the JEDEC spec and all 
architectures
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Intro to DMA attacks

• Physical attack where the attacker connects to a DMA-capable port 
and gains full read/write access to the entire physical memory

 e.g. PCI, PCI-E, FireWire, USB, etc.

• Goal:

 Extract secrets (i.e. disk encryption keys)

 Bypass platform’s security policies (i.e. modify page tables)
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Example of DMA attack

• Ulf Frisk demonstrated a DMA 
attack on a MacBook Air

• He was able to obtain the 
FileVault disk encryption 
password

• macOS Sierra 10.12.2 software 
update patched the security 
issue (Dec 2016)
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Source: http://blog.frizk.net/2016/12/filevault-password-retrieval.html



Pros & Cons of Existing Attacks from Attacker’s Perspective 

• Pros:

 HW, SW and tutorials are readily available

• Cons:

 Require specific interface

 Can be mitigated by BIOS & VT-d

 Can be mitigated by blocking associated drivers and ports
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Motivation

• Pros:

 HW, SW and tutorials are readily available

• Cons:

 Require specific interface

 Can be mitigated by BIOS & VT-d

 Can be mitigated by blocking associated drivers and ports

What if we could eliminate these?
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DRAM design

• A DIMM consists of a series 
of DRAM chips, mounted on 
a PCB.

• The DIMM is inserted into a 
DIMM socket on the 
motherboard, which then 
communicates with the 
processor.

9
Photo credits: https://www.oempcworld.com/mm5/graphics/00000001/ddr4.jpg
http://p.globalsources.com/IMAGES/PDT/B1123866513/DIMM-Socket-Connector.jpg



DRAM Placement

4 available DIMM Sockets
1 DIMM inserted

Reference System: Desktop with 
current generation motherboard 
and CPU
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DRAM Placement

DIMM PCB

Empty DIMM socket
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DRAM HW Design

DIMM PCB

Empty DIMM socket
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DIMM pins



DRAM Placement on Back Side
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Reference System: Desktop with 
current generation motherboard 
and CPU



DRAM HW Design

• All 288-pins of each DIMM 
socket are exposed on both 
sides of the motherboard

• Pins are electrically 
connected
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How could we exploit that?

• What if we could plug into those pins and request reads/writes from 
the DIMM as a “memory controller”?
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DRAM Functionality

• Specified by JEDEC Standard

• Defines the set of requirements that must be satisfied by all 
memory modules and all architectures
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DRAM Functionality: Initialization

1. CPU reads DIMM’s Serial Presence Detect (SPD) EEPROM data via 
SMBus

 Manufacturer, module serial, supported voltage, minimum latencies, etc.

 Bypass Memory Controller
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DRAM Functionality: Initialization

2. CPU decides on a clock frequency and configures Memory 
Controller
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DRAM Functionality: Initialization

3. Memory Controller performs memory calibration

 MC is agnostic of motherboard and DIMM traces

 Calculates the round-trip time between MC and DIMM

 Calculates discrepancies between different traces 19
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DRAM Functionality: Initialization

4. Memory Controller sets DIMM’s Mode Registers

 Enable/disable features, fine tune timings
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DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes

• Memory Controller schedules and optimizes memory accesses

• Memory Controller schedules periodic memory refreshes
21
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DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes

• Memory Controller schedules and optimizes memory accesses

• Memory Controller schedules periodic memory refreshes
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DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes
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DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes

• Memory Controller schedules and optimizes memory accesses

• Memory Controller schedules periodic memory refreshes
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DRAM Functionality: Sleep (S3)

• CPU is powered off

• Memory controller is powered off

• Clock Enable (CKE) memory signal is 0

• The rest of the signals are in tri-state

• DIMM is in self-refresh state
26

Memory 
Controller

CPU

CKE signal 
to 0



DRAM Functionality: Waking up to S0

• CPU and Memory Controller are powered on

• Memory Controller pulls CKE to 1

• Read & Write requests can now be issued
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Protocol Limitation

• No state information is held on the DIMM

• e.g. calibration results, clock frequency

• No authentication between MC and DIMM

• Nothing prevents an attacker from impersonating a Memory 
Controller
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Could we exploit that?

CPU

DDR

Victim 
System

Rogue
MC

Attacker’s 
System

USB

MC

• Create a device that:

 Attaches to the exposed 
signal pins

 Impersonate a MC

• Extremely difficult when 
system is in S0

• Possible when system is in 
S3 sleep
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Could we exploit that?

CPU

DDR

Victim 
System

Rogue
MC

Attacker’s 
System

USB

MC

• Example:

 The victim goes to a 
conference and leaves their 
system in sleep

 The attacker attaches their 
rogue MC on the exposed 
pins

 The attacker now owns the 
system
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Requirements for Successful Exploitation

• Attach rogue MC to the victim system while in S3 sleep

 Pull CKE to 1 to “wake up” the DIMM

 Calibrate our rogue MC to the memory bus traces

 Send memory read/write commands to the DIMM

 Put CKE to 0 to put the DIMM to sleep

• Detach from the victim system and wake up normally
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Signal Injection: CKE signal

• CKE must be pulled up above ~0.7V 
(logic high threshold)

• Find RA so that DIMM sees logic high 
transition

• Larger values reduce current into victim 
MC (IA)
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Signal Injection: CKE signal

A safe value for RA was found to be ~50ohm
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Rogue MC Calibration

CPU

DDR

Victim 
System

Rogue
MC

Attacker’s 
System

USB

MC

• Need to train our rogue MC 
with the new traces

• Normally happens on first 
boot, can be done any time

• Calibration results will be 
the same on the same 
system + DIMM models
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Adjust Clock Frequency

• Rogue MC provides a differential clock signal

• Attacker’s clock can be different than the victim clock

 Lower clock frequency  Better signal integrity

• DDR4 has a default minimum frequency of 800 MHz

 When “DLL-off” Mode Register is enabled, clock frequency can be 
significantly lower (as low as ~128 MHz)

 This Mode Register is accessible to the attacker!
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Issue Reads/Writes

• Follows JEDEC specification using off the shelf FPGA MC

• Iterate through reading all memory addresses

• Selectively write to memory addresses of interest
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Rogue Memory Controller Board
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Mechanical Connector
Motherboard DDR4 Connector Pins

Rogue Memory Controller Board

Crown Tipped Spring Probes
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Threat Model
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• Requires a skilled HW attacker

• Physical access to the victim system

• Invasive

• Requires time to conduct

• May require prior knowledge of the victim system spec



Challenges / Future Work
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• Complete mechanical connector

• Run attack against full length bus

• We anticipate signal noise/reflection challenges



Mitigations
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• Short-term

 Use hibernate (S4) instead of sleep (S3) 

 Focus on physical security

• Long-term

 Enhance DIMM socket and motherboard design to restrict access to pins

 Enhance JEDEC spec to perform authentication



Conclusions
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• Described early research into a physical attack on DRAM memory

• A skilled attacker could exploit HW design and protocol limitations

• New line of research for physical security

• Short- and long-term mitigations are possible



Questions?

• Thank you!

• We are hiring!
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