
Taking DMA Attacks to the Next Level:
How to do arbitrary reads/writes in a live and unmodified system
using a rogue memory controller

Anna Trikalinou and Dan Lake
© 2017 Intel Corporation



Legal Notices and Disclaimers

o This presentation contains the general insights and opinions of Anna Trikalinou and Dan Lake (collectively 
“Presenters”). The views, opinions, findings, and conclusions or recommendations expressed in this presentation are 
strictly those of the Presenters and do not necessarily reflect the official policy or position of the Presenters’ employer. 
The information in this presentation is provided for information only and is not to be relied upon for any purpose other 
than educational. Use at your own risk! Presenters make no representations or warranties regarding the accuracy or 
completeness of the information in this presentation. Presenters accept no duty to update this presentation based on 
more current information. Presenters are not liable for any damages, direct or indirect, consequential or otherwise, that 
may arise, directly or indirectly, from the use or misuse of the information in this presentation.
o No computer system can be absolutely secure. 
o No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this 
document.
o Intel, the Intel logo and Intel Core are trademarks of Intel Corporation in the United States and other countries. 
o *Other names and brands may be claimed as the property of others. 

© 2017 Intel Corporation.



Who are we

• Anna Trikalinou, PhD
Research Scientist
Intel Labs, Intel Corporation
Email: anna.trikalinou@intel.com

• Dan Lake
Systems Engineer
Intel Labs, Intel Corporation
Email: dan.lake@intel.com



About this talk

• This talk describes early research into a physical attack on DRAM 
memory

• We describe hardware design and protocol limitations

• If successful, the result is full access to all physical memory

• Applicable to all memories which follow the JEDEC spec and all 
architectures

4



Intro to DMA attacks

• Physical attack where the attacker connects to a DMA-capable port 
and gains full read/write access to the entire physical memory

 e.g. PCI, PCI-E, FireWire, USB, etc.

• Goal:

 Extract secrets (i.e. disk encryption keys)

 Bypass platform’s security policies (i.e. modify page tables)

5



Example of DMA attack

• Ulf Frisk demonstrated a DMA 
attack on a MacBook Air

• He was able to obtain the 
FileVault disk encryption 
password

• macOS Sierra 10.12.2 software 
update patched the security 
issue (Dec 2016)

6

Source: http://blog.frizk.net/2016/12/filevault-password-retrieval.html



Pros & Cons of Existing Attacks from Attacker’s Perspective 

• Pros:

 HW, SW and tutorials are readily available

• Cons:

 Require specific interface

 Can be mitigated by BIOS & VT-d

 Can be mitigated by blocking associated drivers and ports

7



Motivation

• Pros:

 HW, SW and tutorials are readily available

• Cons:

 Require specific interface

 Can be mitigated by BIOS & VT-d

 Can be mitigated by blocking associated drivers and ports

What if we could eliminate these?
8



DRAM design

• A DIMM consists of a series 
of DRAM chips, mounted on 
a PCB.

• The DIMM is inserted into a 
DIMM socket on the 
motherboard, which then 
communicates with the 
processor.

9
Photo credits: https://www.oempcworld.com/mm5/graphics/00000001/ddr4.jpg
http://p.globalsources.com/IMAGES/PDT/B1123866513/DIMM-Socket-Connector.jpg



DRAM Placement

4 available DIMM Sockets
1 DIMM inserted

Reference System: Desktop with 
current generation motherboard 
and CPU

10



DRAM Placement

DIMM PCB

Empty DIMM socket

11



DRAM HW Design

DIMM PCB

Empty DIMM socket

12

DIMM pins



DRAM Placement on Back Side

13

Reference System: Desktop with 
current generation motherboard 
and CPU



DRAM HW Design

• All 288-pins of each DIMM 
socket are exposed on both 
sides of the motherboard

• Pins are electrically 
connected

14



How could we exploit that?

• What if we could plug into those pins and request reads/writes from 
the DIMM as a “memory controller”?

15



DRAM Functionality

• Specified by JEDEC Standard

• Defines the set of requirements that must be satisfied by all 
memory modules and all architectures

16

Memory 
Controller

CPU



DRAM Functionality: Initialization

1. CPU reads DIMM’s Serial Presence Detect (SPD) EEPROM data via 
SMBus

 Manufacturer, module serial, supported voltage, minimum latencies, etc.

 Bypass Memory Controller
17

CPU
Read SPD



DRAM Functionality: Initialization

2. CPU decides on a clock frequency and configures Memory 
Controller

18

Memory 
Controller

CPU

Configure 
MC



DRAM Functionality: Initialization

3. Memory Controller performs memory calibration

 MC is agnostic of motherboard and DIMM traces

 Calculates the round-trip time between MC and DIMM

 Calculates discrepancies between different traces 19

Memory 
Controller

CPU

Calibrate



DRAM Functionality: Initialization

4. Memory Controller sets DIMM’s Mode Registers

 Enable/disable features, fine tune timings

20

Memory 
Controller

CPU

Configure 
Mode 

Registers



DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes

• Memory Controller schedules and optimizes memory accesses

• Memory Controller schedules periodic memory refreshes
21

Memory 
Controller

CPU

Read/write 
request



DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes

• Memory Controller schedules and optimizes memory accesses

• Memory Controller schedules periodic memory refreshes
22

Memory 
Controller

CPU

Read/write 
request



DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes

• Memory Controller schedules and optimizes memory accesses

• Memory Controller schedules periodic memory refreshes
23

Memory 
Controller

CPU

Read 
data



DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes

• Memory Controller schedules and optimizes memory accesses

• Memory Controller schedules periodic memory refreshes
24

Memory 
Controller

CPU

Read 
data



DRAM Functionality: Normal Operation (S0)

• CPU requests reads & writes

• Memory Controller schedules and optimizes memory accesses

• Memory Controller schedules periodic memory refreshes
25

Memory 
Controller

CPU

Refresh



DRAM Functionality: Sleep (S3)

• CPU is powered off

• Memory controller is powered off

• Clock Enable (CKE) memory signal is 0

• The rest of the signals are in tri-state

• DIMM is in self-refresh state
26

Memory 
Controller

CPU

CKE signal 
to 0



DRAM Functionality: Waking up to S0

• CPU and Memory Controller are powered on

• Memory Controller pulls CKE to 1

• Read & Write requests can now be issued

27

Memory 
Controller

CPU

CKE signal 
to 1



Protocol Limitation

• No state information is held on the DIMM

• e.g. calibration results, clock frequency

• No authentication between MC and DIMM

• Nothing prevents an attacker from impersonating a Memory 
Controller

28

Memory 
Controller

CPU



Could we exploit that?

CPU

DDR

Victim 
System

Rogue
MC

Attacker’s 
System

USB

MC

• Create a device that:

 Attaches to the exposed 
signal pins

 Impersonate a MC

• Extremely difficult when 
system is in S0

• Possible when system is in 
S3 sleep

29



Could we exploit that?

CPU

DDR

Victim 
System

Rogue
MC

Attacker’s 
System

USB

MC

• Example:

 The victim goes to a 
conference and leaves their 
system in sleep

 The attacker attaches their 
rogue MC on the exposed 
pins

 The attacker now owns the 
system

30



Requirements for Successful Exploitation

• Attach rogue MC to the victim system while in S3 sleep

 Pull CKE to 1 to “wake up” the DIMM

 Calibrate our rogue MC to the memory bus traces

 Send memory read/write commands to the DIMM

 Put CKE to 0 to put the DIMM to sleep

• Detach from the victim system and wake up normally

31



Signal Injection: CKE signal

• CKE must be pulled up above ~0.7V 
(logic high threshold)

• Find RA so that DIMM sees logic high 
transition

• Larger values reduce current into victim 
MC (IA)

32



Signal Injection: CKE signal

A safe value for RA was found to be ~50ohm
33



Rogue MC Calibration

CPU

DDR

Victim 
System

Rogue
MC

Attacker’s 
System

USB

MC

• Need to train our rogue MC 
with the new traces

• Normally happens on first 
boot, can be done any time

• Calibration results will be 
the same on the same 
system + DIMM models

34



Adjust Clock Frequency

• Rogue MC provides a differential clock signal

• Attacker’s clock can be different than the victim clock

 Lower clock frequency  Better signal integrity

• DDR4 has a default minimum frequency of 800 MHz

 When “DLL-off” Mode Register is enabled, clock frequency can be 
significantly lower (as low as ~128 MHz)

 This Mode Register is accessible to the attacker!

35



Issue Reads/Writes

• Follows JEDEC specification using off the shelf FPGA MC

• Iterate through reading all memory addresses

• Selectively write to memory addresses of interest

36
Photo credit: JEDEC Spec DDR4 SDRAM



Rogue Memory Controller Board

37

FPGA



Mechanical Connector
Motherboard DDR4 Connector Pins

Rogue Memory Controller Board

Crown Tipped Spring Probes

38



Threat Model

39

• Requires a skilled HW attacker

• Physical access to the victim system

• Invasive

• Requires time to conduct

• May require prior knowledge of the victim system spec



Challenges / Future Work

40

• Complete mechanical connector

• Run attack against full length bus

• We anticipate signal noise/reflection challenges



Mitigations

41

• Short-term

 Use hibernate (S4) instead of sleep (S3) 

 Focus on physical security

• Long-term

 Enhance DIMM socket and motherboard design to restrict access to pins

 Enhance JEDEC spec to perform authentication



Conclusions

42

• Described early research into a physical attack on DRAM memory

• A skilled attacker could exploit HW design and protocol limitations

• New line of research for physical security

• Short- and long-term mitigations are possible



Questions?

• Thank you!

• We are hiring!

43



Acknowledgements

We would like to thank the following current or former Intel Employees for their contributions to the work 
upon which this research builds:

Abhishek Basak

Rodrigo Branco

Sergej Deutsch

David Durham

Ken Grewal

Shay Gueron

Przemek Guzy

Jayson Strayer 44


