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Abstract 
Microsoft has put significant effort into mitigating and increasing the difficulty in exploiting vulnerabilities 

in Windows 10, this also applies for kernel exploits and greatly raises the bar. Most kernel exploits today 

require a kernel-mode read and write primitive along with a KASLR bypass. Windows 10 Anniversary 

Update and Creators Update has mitigated and broken most known techniques. 

As this paper shows it is possible, despite the numerous implemented changes and mitigations, to still 

make use of the bitmap and tagWND kernel-mode read and write primitives. Furthermore, KASLR bypasses 

are still possible due to design issues and function pointers in kernel-mode structures.  

KASLR bypasses together with kernel-mode read primitives allow for de-randomization of the Page Table 

base address, which allows for reuse of the Page Table Entry overwrite technique. Additionally, it is possible 

to hook kernel-mode function calls to perform kernel memory allocations of writable, readable and 

executable memory and retrieving the kernel address of that memory. Using this method overwriting Page 

Table Entries is not needed and any shellcode can be executed directly when it has been copied onto the 

newly allocated memory pages. 

The overall conclusion is that despite the increased number of mitigations and changes it is still possible to 

take advantage of Write-What-Where vulnerabilities in Creators Update to gain kernel-mode execution. 
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Background and Windows Kernel Exploitation History 
Kernel Exploitation has been on the rise in recent years, this is most likely a response to the increased 

security in popular user-mode applications like Internet Explorer, Google Chrome and Adobe Reader. Most 

of these major applications have implemented sandboxing technologies which must be escaped to gain 

control of the compromised endpoint. 

While sandboxing techniques are not as powerful on Windows 7, kernel exploits have an interest 

nonetheless, since they allow for privilege escalation. Leveraging kernel vulnerabilities on Windows 7 is 

considered rather simple, this is due to the lack of security mitigations and availability of kernel 

information.  

It is possible to gain information on almost any kernel object using API’s built into Windows. These include 

NtQuerySystemInformation1 and EnumDeviceDrivers2 which will reveal kernel drivers base address as well 

as many kernel objects or pool memory locations3. Using NtQuerySystemInformation it is quite simple to 

reveal the base address of ntoskrnl.exe 

 

Likewise, objects allocated on the big pool can also be found as described by Alex Ionescu4 

 

While having the addresses of kernel drivers and objects is only a small part of kernel exploitation, it is 

important. Another crucial factor is storing the shellcode somewhere and getting kernel-mode execution of 

it. On Windows 7 the two easiest ways of storing the shellcode was to either allocate executable kernel 

memory with the shellcode in place or by using user memory but executing it from kernel-mode. 

Allocating executable kernel memory with arbitrary content can on Windows 7 be done using CreatePipe 

and WriteFile5, since the content is stored on the NonPagedPool which is executable 

                                                           
1 https://msdn.microsoft.com/en-us/library/windows/desktop/ms724509(v=vs.85).aspx 
2 https://msdn.microsoft.com/en-us/library/windows/desktop/ms682617(v=vs.85).aspx 
3 https://recon.cx/2013/slides/Recon2013-Alex%20Ionescu-
I%20got%2099%20problems%20but%20a%20kernel%20pointer%20ain't%20one.pdf 
4 http://www.alex-ionescu.com/?p=231 
5 http://www.alex-ionescu.com/?p=231 
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Gaining kernel-mod execution can be achieved by either overwriting the bServerSideWindowProc bit of a 

kernel-mode Window object. This causes the associated WProc function to be executed by a kernel thread 

instead of a user-mode thread. A different way is by overwriting a function pointer in a virtual table, a very 

commonly used one is HalDispatchTable in ntoskrnl.exe. 

Windows 8.1 introduced several hardening initiatives, which resulted in increasing the difficulty of kernel 

exploitation. To start with the kernel leaking API’s like NtQuerySystemInformation are blocked if called 

from low integrity, which is the case when the application is running inside a sandbox. Windows 8.1 also 

made the use of non-executable memory in the kernel widespread, NonPagedPool memory was generally 

replaced with NonPagedPoolNx memory. Finally, Windows 8.1 introduced Supervisor Mode Execution 

Prevention (SMEP), which blocks execution of code from user-mode addresses from a kernel-mode context. 

These mitigations stop most exploitation techniques which are known in Windows 7, however exploitation 

is still very much possible, it does require new techniques however. Windows 10 has the same mitigations 

in place. The two first editions of Windows 10, which are called Windows 10 1507 and 1511 do not have 

any additional mitigations in place however. 

 

Kernel Read and Write Primitives 
To overcome the mitigations put in place in Windows 8.1 and Windows 10, the concept of memory read 

and write primitives known from user-mode browser exploits were adapted into kernel exploitation. Two 

kernel-mode read and write primitives are the most popular and mostly used. These are coined bitmap 

primitive and tagWND primitive. 

The bitmap primitive makes use of the GDI object Bitmap, which in kernel-mode is called a Surface object. 

The principle is to perform allocations of these Surface objects using CreateBitmap such that two bitmap 

objects are placed next to each other. When this is the case a Write-What-Where vulnerability may be used 

to modify the size of the first Surface object. The size of a Surface object is controlled by the sizlBitmap field 

which is at offset 0x38 of the object, it consists of the bitmaps dimensions defined by a DWORD each. 

When the size of the bitmap has been increased it is possible to use the API’s SetBitmapBits and 

GetBitmapBits to modify the second Surface object6. The field modified is the pointer which controls where 

the bitmap content is stored. This allows both read and write capabilities at arbitrary kernel memory 

locations. The read and write functionality can be implemented as shown below: 

                                                           
6 https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives 
 

https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives
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To perform the overwrite using a Write-What-Where vulnerability requires knowledge of where the 

Surface object is in kernel-mode. Since this must also work from Low Integrity API’s like 

NtQuerySystemInformation cannot be used. It is however possible to find the address of the Surface object 

through the GdiSharedHandleTable structure which is held by the Process Environment Block. The 

GdiSharedHandleTable is a structure containing all GDI objects, including Surface objects. Using the handle 

to the user-mode bitmap object it is possible to look up the correct entry in the table, where the kernel-

mode address of the Surface object is given. 

The second read and write kernel-mode primitive was the tagWND. It uses a similar technique to the 

bitmap read and write primitive, by allocating two Windows, which has corresponding kernel-mode objects 

called tagWND. These tagWND objects must also be located next to each other.  

A tagWND object may contain a variable size field called ExtraBytes, if the size of this field, which is called 

cbWndExtra, is overwritten then it is possible to modify the next tagWND object. Using the 

SetWindowLongPtr API it is now possible to modify arbitrary fields of the following tagWND object, 

specifically the StrName field, which specifies the location of the title name of the Window. Using the user-

mode API’s InternalGetWindowText and NtUserDefSetText it is possible to perform read and write 

operations at arbitrary kernel memory addresses7. 

A write primitive may be implemented as shown below: 

                                                           
7 https://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf 
 

https://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf
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Just like with the bitmap read and write primitive, the location of the tagWND object must be known. This 

is possible using the UserHandleTable presented by the exportable structure called gSharedInfo located in 

User32.dll. It contains a list of all objects located in the Desktop Heap in kernel-mode, having the handle of 

the user-mode Window object allows a search through the UserHandleTable, which reveals the kernel-

mode address of the associated tagWND object. An implementation is shown below: 

 

To overcome the issue of non-executable kernel memory a technique called Page Table Entry overwrite has 

become very common. The idea is to allocate shellcode at a user-mode address, resolve its corresponding 

Page Table Entry and overwrite it. The Page Table contains the metadata of all virtual memory, including 

bits indicating whether the memory page is executable or not and whether it is kernel memory or not. 

Leveraging the kernel-mode write primitive against a Page Table Entry for an allocated page allows for 

modification of execution status and kernel-mode status. It is possible to turn user-mode memory into 

kernel-mode memory in regards to SMEP allowing for execution. The base address of the Page Tables is 

static on Windows 8.1 and Windows 10 1507 and 1511 and the address of the Page Table Entry may be 

found using the algorithm below 

 

Performing an overwrite can also turn non-executable kernel memory into executable kernel memory 
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Windows 10 Mitigations 
 

Once executable kernel-mode memory has been created gaining execution may be performed by the same 

methods as on Windows 7.  

In many instances, the base address of ntoskrnl.exe is needed, previously this was done using 

NtQuerySystemInformation, but since that is no longer possible a very effective way is to use the HAL 

Heap8. This was in many cases allocted at a static address and contains a pointer into ntoskrnl.exe at offset 

0x448. Using the kernel-mode read primitive to read the content at address 0xFFFFFFFFFD00448 yields a 

pointer into ntoskrnl.exe, this may then be used to find the base address of the driver by looking for the MZ 

header, as shown below 

 

This concludes the brief history of kernel exploitation from Windows 7 up to Windows 10 1511. 

 

  

                                                           
8 https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-
hals-heap 
 

https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap
https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap
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Windows 10 1607 Mitigations 
Windows 10 Anniversary Update, which is also called Windows 10 1607 introduced additional mitigations 

against kernel exploitation. First, the base address of Page Tables is randomized on startup, making the 

simple translation of memory address to Page Table Entry impossible9. This mitigates the creation of 

executable kernel-mode memory in many kernel exploits.  

Next the kernel-mode address of GDI objects in the GdiSharedHandleTable were removed. This means that 

it is no longer possible to use this method to locate the kernel-mode address of the Surface objects, which 

in turn means that it is not possible to overwrite the size of a Surface object, breaking the bitmap kernel-

mode read and write primitive.  

Finally, the strName field of a tagWND object must contain a pointer which is inside the Desktop Heap 

when being used by InternalGetWindowText and NtUserDefSetText10. This limits it usage since it can no 

longer be used to read and write at arbitrary kernel-mode address.  

 

Revival of Kernel Read and Write Primitives 
This section goes into the mitigations which break the kernel-mode read and write primitives. The first 

primitive to be examined is the bitmap primitive. The issue to be resolved is how to find the kernel-mode 

address of the Surface object. If the Surface object has a size of 0x1000 or larger it is in the Large Paged 

Pool. Furthermore, if the Surface object has a size of exactly 0x1000 the Surface objects will be allocated to 

individual memory pages.  

Allocating many Surface objects of size 0x1000 will cause them to be allocated to consecutive memory 

pages. This makes sure that locating one Surface object will reveal several Surface objects, which is needed 

for the kernel-mode read and write primitive. The Large Paged Pool base address is randomized on startup, 

which requires a kernel address leak. 

Inspecting the Win32ThreadInfo field of the TEB shows 

 

It turns out the pointer is exactly the address leak we need, since the base address of the Large Paged Pool 

can be found from it by removing the lower bits. If very large Surface objects are created they will give a 

predictable offset from the base address, this may be done as seen below 

                                                           
9 https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf 
 
10 https://blogs.technet.microsoft.com/mmpc/2017/01/13/hardening-windows-10-with-zero-day-exploit-mitigations/ 

https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf
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Using the static offset 0x16300000 will turn the Win32ThreadInfo pointer into an information leak of the 

Surface object as shown below 

 

Inspecting the memory address given by the leakPool function after allocating the large Surface objects 

shows 

 

While this does point into the Surface object, it is only the data content of the object. It turns out that it will 

almost always be the second Surface object, if that is deleted and the freed memory space is reallocated by 

Surface objects which take up exactly 0x1000 bytes. This is done by allocating close to 10000 Surface 

objects as seen below 

 

Inspecting the memory address given by the address leak will now reveal a Surface object as seen below 
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By exploiting a Write-Where-What vulnerability the size of the Surface can be modified since the size is now 

at a predictable address. 

The second issue is the mitigation of the tagWND kernel-mode read and write primitive. The strName 

pointer of tagWND can only point inside the Desktop Heap when it is used through InternalGetWindowText 

and NtUserDefSetText. This limitation is enforced by a new function called DesktopVerifyHeapPointer as 

seen below 

 

The strName pointer which is in RDX is compared with the base address of the Desktop Heap as well as the 

maximum address of the Desktop Heap. If either of these comparisons fail a BugCheck occur. While these 

checks cannot be avoided the Desktop Heap addresses come from a tagDESKTOP object. The pointer for 

the tagDESKTOP object is never validated and is taken from the tagWND object. The structure of the 

tagWND concerning the tagDESKTOP is seen below 
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The tagDESKTOP object used in the comparison is taken from offset 0x18 of the tagWND object. When 

SetWindowLongPtr is used to modify the strName pointer, it is also possible to modify the tagDESKTOP 

pointer. This allows for creating a fake tagDESKTOP object as seen below 

 

This allows the exploit to supply a fake Desktop Heap base and maximum address which is just below and 

above the pointer dereferenced by strName. This can be implemented as shown below 

 

Using the modification discussed in this section allows the continued use of both the bitmap and the 

tagWND kernel-mode read and write primitives.  
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Windows 10 1703 Mitigations 
Windows 10 Creators Update or Windows 10 1703 introduce further mitigations against kernel 

exploitation. The first mitigation is directed against the tagWND kernel-mode read and write primitive. This 

is performed in two ways, first the UserHandleTable from the gSharedInfo structure in User32.dll is 

changed. The previous kernel-mode addresses of all objects in the Desktop Heap is removed as seen below. 

First the Windows 10 1607 UserHandleTable is shown 

 

Then for Windows 10 1703 

 

Like the removal of kernel-mode addresses in GdiSharedHandleTable in Windows 10 1607, this removal of 

kernel-mode addresses in UserHandleTable removes the possibility of locating the tagWND object. The 

second change is modification of SetWindowLongPtr, any ExtraBytes written are no longer located in 

kernel-mode. As shown below the ExtraBytes pointer is taken at offset 0x180 from the beginning of the 

tagWND object. 

  

Inspecting registers at the point of write shows the value in R14 of 0xFFFFF78000000000 to be written to 

the address in RCX, which is an address in user-mode 
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This clearly breaks the primitive since the strName field of the second tagWND can no longer be modified. 

There are two additional changes in Creators Update, the first, which is a minor change, modifies the size of 

the Surface object header. The header is increased by 8 bytes, which must be considered, else the 

allocation alignment fails. The second is the randomization of the HAL Heap, this means that a pointer into 

ntoskrnl.exe can no longer be found at the address 0xFFFFFFFFFD00448. 
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Revival of Kernel Read and Write Primitives Take 2 
With the changes in Windows 10 Creators Update, both kernel-mode read and write primitives break, 

however the changes to the bitmap primitive are minimal and may be rectified in a matter of minutes by 

simple decreasing the size of each bitmap to ensure it takes of 0x1000 bytes. The changes for the tagWND 

kernel-mode read and write primitive are much more substantial. 

The Win32ClientInfo structure from the TEB has also been modified, previously offset 0x28 of the structure 

was the ulClientDelta, which describes the delta between the user-mode mapping and the actual Desktop 

Heap. Now the contents are different: 

  

A user-mode pointer has taken its place, inspecting that pointer reveals it to be the start of the user-mode 

mapping directly, which can be seen below: 

 

In this example, the content of the two memory areas are the same, and that the Desktop Heap starts at 

0xFFFFBD2540800000. While the UserHandleTable is removed and the metadata to perform a search for 

the handle has been removed, the actual data is still present through the user-mode mapping. By 

performing a manual search in the user-mode mapping it is possible to locate the handle and from that 

calculate the kernel-mode address. First the user-mapping is found and the delta between it and the real 

Desktop Heap as seen below. 

 

Next the kernel-mode address of the tagWND object can be located from the handle: 
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This overcomes the first part of the mitigation introduced in Creators Update. While the address of the 

tagWND object can be found, it still does not solve all the problems, since SetWindowLongPtr cannot 

modify the strName of the following tagWND object, it is still not possible to perform read and write 

operations of arbitrary kernel memory. 

The size of ExtraBytes for a tagWND object denoted by cbWndExtra is set when the window class is 

registered by the API RegisterClassEx. While creating the WNDCLASSEX structure used by RegisterClassEx 

another field called cbClsExtra is noted as seen below 

 

This field defines the size of ExtraBytes for the tagCLS object which is associated with a tagWND object. The 

tagCLS object is also allocated to the Desktop Heap and registering the class just prior to allocating the 

tagWND makes the tagCLS object to be allocated just before the tagWND object. Allocating another 

tagWND object after that brings about a layout as seen below 

 

 

By overwriting the cbClsExtra field of the tagCLS object instead of the cbWndExtra field of the tagWND1 

object we obtain an analogous situation to before. Using the API SetClassLongPtr instead of 

SetWindowLongPtr allows for modification of the ExtraBytes of the tagCLS object. This API has not been 

modified and still writes its ExtraBytes to the Desktop Heap, which once again allows for modifying the 

strName field of tagWND2. 

tagCLS tagWND2 tagWND1 
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An arbitrary write function can be implemented as shown below 

 

A similar arbitrary read primitive can be created as well, thus completely bypassing the mitigations 

introduced in Creators Update against kernel-mode read and write primitives. 
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Kernel ASLR Bypass 
The mitigations introduced in Windows 10 Anniversary Update and Creators Update have eliminated all 

publicly known leaks of kernel drivers. Often kernel-mode information leak vulnerabilities are found, but 

these are patched by Microsoft, of more interest are the kernel driver information leaks which are due to 

design issues. The last two known KASLR bypasses were due to the non-randomization of the HAL Heap and 

the SIDT assembly instruction, both have been mitigated in Windows 10 Creators Update and Anniversary 

Update respectively. 

Often kernel driver memory addresses are needed to complete exploits, so discovering new design issues 

which lead to kernel driver information leaks are needed. The approach used is to make KASLR bypasses 

which relate to the specific kernel-mode read primitive. So, one KASLR bypass is created for the bitmap 

primitive and one for the tagWND primitive. 

The first one to be discussed is the one related to the bitmap primitive. Looking at the kernel-mode Surface 

object in the structures reversed engineered from Windows XP and written on REACTOS shows the Surface 

object to have the following elements 

 

Reading the description of the field called hdev yields 

 

This gives the question of what is the PDEVOBJ, luckily that structure is also given on REACTOS and contains 
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The fields of type PFN are function pointers and will give us a kernel pointer. The method for leaking is then 

to read the hdev field and use that to read out the function pointer. Inspecting the Surface object in 

memory shows the value of hdev to be empty 

  

Creating the bitmap object with the CreateBitmap API does not populate the hdev field, however other 

API’s exist to create bitmaps. Using the CreateCompatibleBitmap API also creates a bitmap and a kernel-

mode Surface object, inspecting that object in memory shows it to contain a valid hdev pointer 

 

 

 

 

Using this pointer and dereferencing offset 0x6F0 gives the kernel-mode address of DrvSynchronizeSurface 

in the kernel driver cdd.dll.  
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To leverage this, the following method is employed. First locate the handle to the bitmap which has its 

Surface object at an offset 0x3000 bytes past the one found with the pool leak. Then free that Surface 

object by destroying the bitmap and reallocate multiple bitmap objects using the CreateCompatibleBitmap 

API. This is implemented below 

 

The hdev pointer is then at offset 0x3030 from the pool leak, which in turn gives the pointer to 

DrvSynchronizeSurface. DrvSynchronizeSurface contains a call to the function 

ExEnterCriticalRegionAndAcquireFastMutexUnsafe in ntoskrnl.exe at offset 0x2B as shown below 

 

From this pointer into ntoskrnl.exe it is possible to find the base address by checking for the MZ header and 

searching backwards 0x1000 bytes at a time until it is found. The complete ntosknl.exe base address leak 

function is shown below 

 

 

While the above explained KASLR bypass works best while used in conjunction with the bitmap read and 

write primitive, the tagWND read and write primitive can also make use of a similar idea. By looking at 

structures documented on REACTOS from Windows XP, the header of a tagWND object is a structure called 

THRDESKHEAD, which contains another structure called THROBJHEAD, which in turn contains a pointer to a 

structure called THREADINFO. This is shown below, first the tagWND structure header 
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Followed by the THRDESKHEAD and the THROBJHEAD 

 

Finally, the header of the THREADINFO structure, which contains a structure called W32THREAD 

 

The W32THREAD structure contains a pointer to the KTHREAD object as its first entry 

 

While this is a lot of structure transversal of very old documented structures it is worth noticing that even 

in Windows 10 Creators Update the KTHREAD contains a pointer into ntoskrnl.exe at offset 0x2A8. Thus 

given the kernel-mode address of a tagWND object it is possible to gain a pointer to ntoskrnl.exe. By 

translating the 32-bit Windows XP structures to 64-bit Windows 10 and inspecting memory it becomes 

clear that dereferencing offset 0x10 of the tagWND object gives the pointer to the THREADINFO object. 

Dereferencing that pointer gives the address of the KTHREAD, this is shown in memory below 
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It is possible to wrap this KASLR bypass in a single function, where the base address of ntoskrnl.exe is found 

from the pointer into notoskrnl.exe in the same fashion as explained for the bitmap primitive. 
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Dynamic Function Location 
In the following sections, it becomes important to locate the address of specific kernel driver functions, 

while this could be done using static offsets from the header, this might not work across patches. A better 

method would be to locate the function address dynamically using the kernel-mode read primitive. 

The read primitives given so far only read out 8 bytes, but both the bitmap and the tagWND primitive can 

be modified to read out any given size buffer. For the bitmap primitive this depends on the size of the 

bitmap, which can be modified allowing for arbitrary reading size. The arbitrary size bitmap read primitive 

is shown below 

 

The only difference is the modification of the size values and the size of the data buffer to retrieve in the 

final GetBitmapBits call. This one read primitive will dump the entire kernel driver, or the relevant part of it 

into a buffer ready for searching inside user-mode memory. 

The next idea is using a simple hash value of the function to locate it. The hash function used is simply 

adding four QWORDS offset by 4 bytes together. While no proof of collision avoidance will be made, it has 

turned out to be very effective. The final location function is shown below 
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Page Table Randomization 
As previously mentioned the most common way of achieving executable kernel memory in Windows 10 is 

by modifying the Page Table Entry of the memory page where the shellcode is located. Prior to Windows 10 

Anniversary Update the Page Table Entry of a given page can be found through the algorithm shown below 

 

In Windows 10 Anniversary Update and Creators Update the base address value of 0xFFFFF68000000000 

has been randomized. This makes it impossible to simply calculate the Page Table Entry address for a given 

memory page. While the base address has been randomized the kernel must still look up Page Table Entries 

often, so kernel-mode API’s for this must exist. One example of this is MiGetPteAddress in ntoskrnl.exe. 

Opening MiGetPteAddress in Ida Pro shows that the base address is not randomized 

 

However, looking at it in memory shows the randomized base address 

 

The idea is to find the address of MiGetPteAddress and read the randomized base address and use that 

instead of the previously static value. The first part can be achieved by leveraging the read primitive and 

locating the function address as described in the previous section. Having found the address of 

MiGetPteAddress, the base address of the Page Table Entries are at an offset of 0x13 bytes. This can be 

implemented as shown below 
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Next the address of the Page Table Entry of a given memory page can be found by the original method, only 

using the randomized base address 

 

This may also be verified directly in memory, as shown in the example below for the memory address 

0xFFFFF78000000000 

 

If the shellcode is written to offset 0x800 of the KUSER_SHARED_DATA structure, which is still static in 

memory at the address 0xFFFFF78000000000, the updated method can be used to locate the Page Table 

Entry. Then the memory protection can be modified by overwriting the Page Table Entry to remove the NX 

bit, which is the highest bit. 

 

Execution of the shellcode can be performed with known methods like overwriting the HalDispatchTable 

and then calling the user-mode API NtQueryIntervalProfile 

 

This technique de-randomizes the Page Tables and brings back the Page Table Entry overwrite technique. 
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Executable Memory Allocation 
While modifying the Page Table Entry of an arbitrary memory page containing shellcode works, the method 

from Windows 7 of directly allocating executable kernel memory is neat. This section explains how this is 

still possible to obtain on Windows 10 Creators Update. 

Many kernel pool allocations are performed by the kernel driver function ExAllocatePoolWithTag in 

ntoskrnl.exe. According to MSDN the function takes three arguments, the type of pool, size of the 

allocation and a tag value. 

 

Just as importantly on success the function returns the address of the new allocation to the caller. While 

NonPagedPoolNX is the new standard pool type for many allocations, the following pool types exist even 

on Windows 10. 

 

Specifying the value 0 as pool type will force an allocation of pool memory which is readable, writable and 

executable. Calling this function from user-mode can be done in the same way as shellcode memory pages 

are through NtQueryIntervalProfile. Sadly, to reach the overwritten entry in the HalDispatchTable specific 

arguments must be supplied, rendering the call to ExAllocatePoolWithTag invalid. 

Another way of calling ExAllocatePoolWithTag is needed, the technique used by overwriting the 

HalDispatchTable could work for other user-mode functions if different function tables can be found. One 

such function table is gDxgkInterface which is in the kernel driver win32kbase.sys, the start of the function 

table is seen below 
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Many functions use this function table, the requirements for the function we need is the following; it needs 

to be callable from user-mode, it must allow at least three user controlled arguments without modifications 

and it must be called rarely by the operating system or background processes to avoid usage after we 

overwrite the function table. 

One function which matches these requirements is the user-mode function NtGdiDdDDICreateAllocation, 

which in dxgkrnl is called DxgkCreateAllocation and seen above at offset 0x68 in the function table. The 

user-mode function is not exportable, but only consists of a system call in win32u.dll. It is possible to 

implement the system call directly when using it, this is shown below 

 

When the system call is invoked it gets transferred to the kernel driver win32k.sys which dispatches it to 

win32kfull.sys, which in turn dispatches it to win32kbase.sys. In win32kbase.sys the function table 

gDxgkInterface is referenced and a call is made to offset 0x68. The execution flow can be seen below 

 

All the involved drivers only implement very thin trampolines around the system call. The consequence is 

that no arguments are modified, which was the second requirement for. When performing testing an 

overwrite of the DxgkCreateAllocation function pointer does not cause any unintended problems due to 

additional calls, which was the third and final requirements. 

To use NtGdiDdDDICreateAllocation and the gDxgkInterface function table, the latter must be writable. 

Inspecting the Page Table Entry is seen below 
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While the content of the Page Table Entry may be hard to interpret directly, it can be printed according to 

the structure _MMPTE_HARDWARE and shows the function table to be writable 

 

In principle, all the elements needed are in place, the idea is to overwrite the function pointer 

DxgkCreateAllocation at offset 0x68 in the function table gDxgkInterface with ExAllocatePoolWithTag 

followed by a call to NtGdiDdDDICreateAllocation specifying NonPagedPoolExecute as pool type. The 

remaining practical issue is locating the gDxgkInterface function table. We have several KASLR bypasses to 

locate the base address of ntoskrnl.exe, but so far, no ways to find other drivers. 

The structure PsLoadedModuleList in ntoskrnl.exe contains the base address of all loaded kernel modules, 

thus finding other kernel drivers in memory is possible. The structure of the doubly-link list given by 

PsLoadedModuleList is shown below 

 

Thus, iterating through the linked list until the correct name in offset 0x60 is found will allow for reading 

the base address at offset 0x30. 

Locating the PsLoadedModuleList structure directly using the previously mentioned algorithm to find 

function addresses does not work since this is not a function, but just a pointer. A lot of functions use the 

structure so it is possible to find the pointer from one of these. 

KeCapturePersistentThreadState in ntoskrnl.exe uses PsLoadedModuleList which can be seen below 
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It is possible to use the function finding algorithm to locate KeCapturePersistentThreadState and then 

dereference PsLoadedModuleList, which in turn will give the base address of any loaded kernel module. 

While getting the base address of win32kbase.sys is possible, the problem of locating the function table 

gDxgkInterface is the same as finding the PsLoadedModuleList pointer. A better approach is finding a 

function which uses the function table and then read the address of gDxgkInterface from that. 

One viable function is DrvOcclusionStateChangeNotify in the kernel driver win32kfull.sys, which has the 

disassembly shown below 

 

From this function pointer, the function table can be found, which allows for overwriting the 

DxgkCreateAllocation function pointer with ExAllocatePoolWithTag. 
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Following the pool allocation, the shellcode can be written to it using the kernel-mode write primitive. 

Finally, the gDxgkInterface function table can be overwritten again with the pool address followed by an 

additional call to NtGdiDdDDICreateAllocation. 

 

The arguments for the NtGdiDdDDICreateAllocation function call is the address of DxgkCreateAllocation 

and its original place in the function table. This allows the shellcode to restore the function pointers in the 

function table, thus preventing any future calls to NtGdiDdDDICreateAllocation crashing the operating 

system. 

 

 

 

 


