black hat USA 2017

JULY 22-27, 2017 MANDALAY BAY / LAS VEGAS

🔰 #BHUSA / @BLACKHATEVENTS

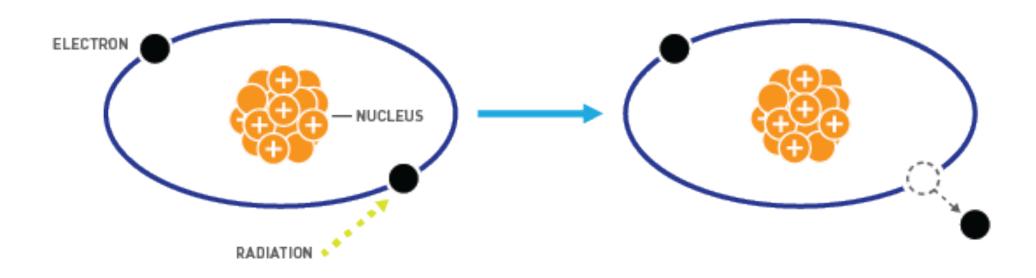
Ruben Santamarta

- Principal Security Consultant, IOActive
 - Embedded
 - Reverse Engineering
 - RF
 - Hardware Hacking
 - Transportation

Agenda

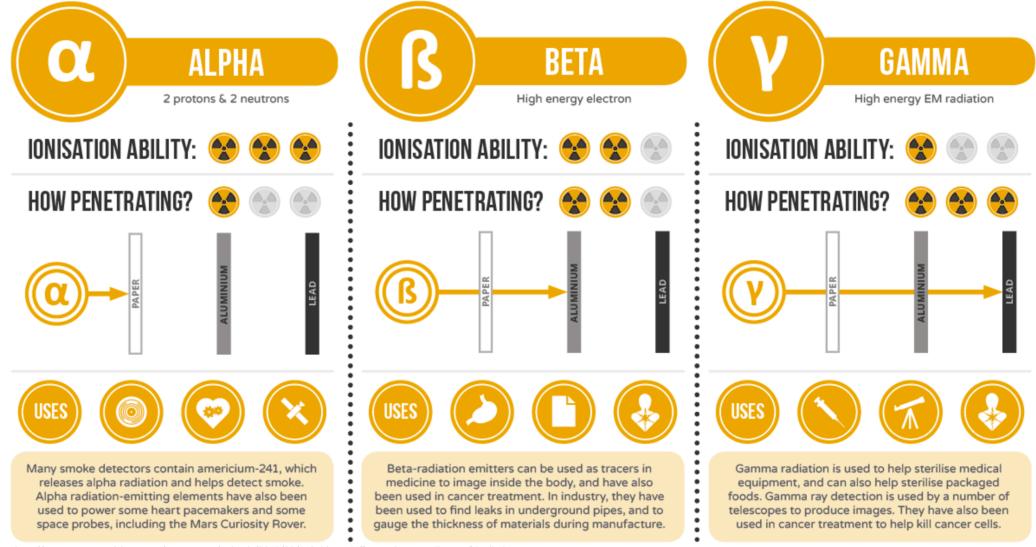
- 1. Introduction
- 2. Portal Monitors Ludlum
 - 1. Pedestrian
 - 2. Vehicle
- 3. Radiation Monitoring Systems Mirion
 - 1. WRM2 Protocol
 - 2. Affected products
 - 3. Methodology and vulnerabilities
- 4. Attacks
- 5. Responsible disclosure

Three Mile Island, US



Juzbado, Spain

Juzbado, Spain (September 2007)	Guards at a fuel-element-producing facility found uranium tablets along a perimeter fence, in what authorities believe was an attempt by	Potential theft for illicit trade
(September 2007)	a member of the workforce to smuggle the goods out of the complex. ⁸⁴	illicit trade



IONIZING RADIATION

http://www.compoundchem.com/wp-content/uploads/2015/09/A-Guide-to-Different-Common-Types-of-Radiation.pr

LUDLUM

"Our product lines serve many different markets including **nuclear power**, national laboratories, homeland security, oil and gas exploration, mining, environmental, medicine, industry, government, solid waste and more[...] Ludlum has shipped **over 2500 gateway systems to over 20 countries**.[...] We have additionally received significant contracts by the **US government and more recently by China for the more stringent homeland security applications along borders and ports**" www.ludlums.com

PORTAL MONITORS

- Sea/Dry Ports
- Border Crossings
- Airports
- Nuclear Power Plants

Frank Franklin II/ASSOCIATED PRESS

Pedestrian

Ludium Measurements	Engineering ID: 000001
	OK
Ceurt complete, no contamination dete Peace exit the portal	
1	0:21
Accel 53 Personnal Podal Monitor	Hered Salar Hered 1 Dar Disease Hered 2 Dar Exit

// Lmi.Sam.Supervisor.Host
private const string BackDoor = "5147";

// Lmi.Sam.Supervisor.Host public void ValidatePassword(string Password)

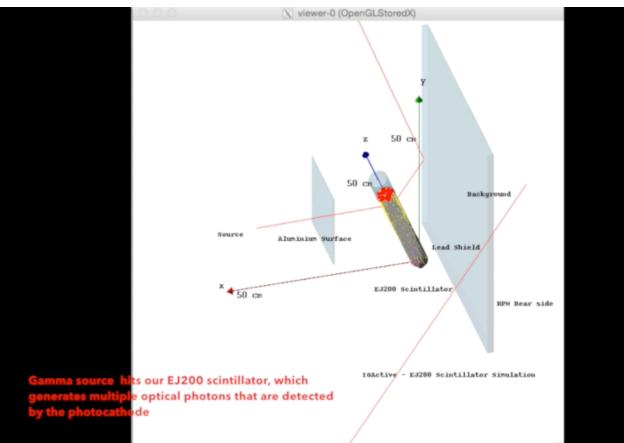
ApplicationSettings applicationSettings = Program.Monitor.Settings; this.currentPasswordLevel = Host.Level.None; if (Password == applicationSettings.PasswordDecrypt(applicationSettings.Level1Password)) { this.currentPasswordLevel = Host.Level.Level1; } if (Password == applicationSettings.PasswordDecrypt(applicationSettings.Level2Password)) { this.currentPasswordLevel = Host.Level.Level2;

if (Password == "5147")

this.currentPasswordLevel = Host.Level.Level2;

BackDoor = "5147"

Vehicles


Image by www.ludlums.con

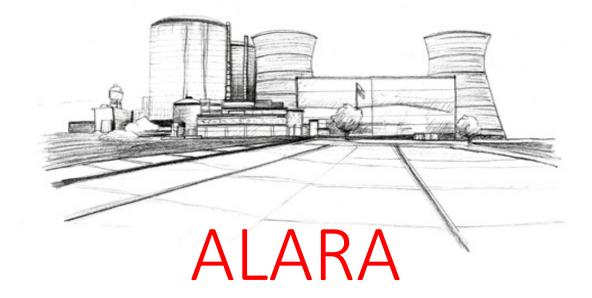
4525 SERIES

- 20034/UDP
 - NetBurner Discovery and Configuration
- 23/TCP
 - Ludlum Clear-Text Protocol

Stealth Man-in-the-middle Attack

- Hides specific isotopes
- CERN's GEANT4

http://geant4.web.cern.ch/geant4/


EJ200 Scintillator

Full video Available on IOActive's Youtube Channel

Radiation Monitoring Systems

Image by Mike Walker

As Low As Reasonably Achievable

RMDs aid plant personnel in:

- Protecting the health and safety of the public and plant personnel
- Assessing plant radiological conditions to identify and mitigate the consequences of abnormal plant events
- Monitoring effluents and environmental monitoring no matter the operational states.

RMDs provide:

- Input to safety systems (Class 1E)
 - Data to be consumed by operators

- Portable, semi-portable or locally installed equipment
 - 1. Alpha, beta, gamma, neutron
 - 2. Teledosimetry
 - 3. Remote operation
 - 4. Health Physics/ Emergency Response Teams

Purpose

- Personnel
- Area
- Process
- Waste
- Environmental

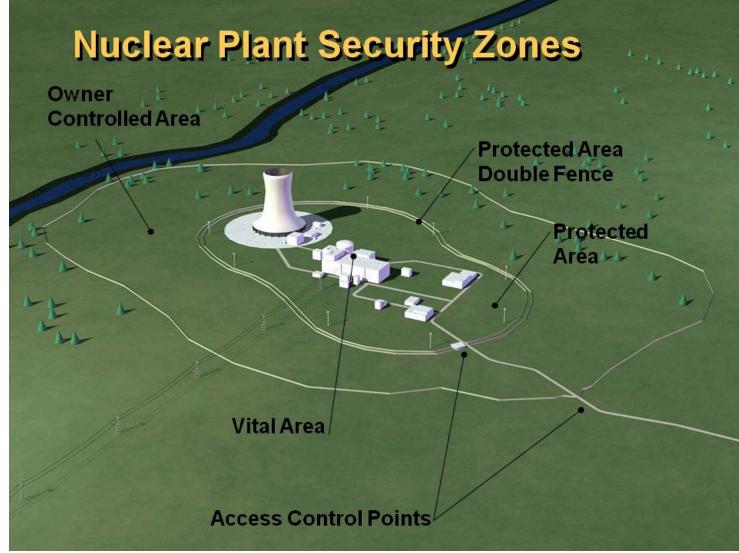
Safety

- Not important to safety
- Important to safety
 - Safety Systems
 - Protection systems, safety actuation systems,
 - Power Supply, HVAC
 - 1E
 - Safety-Related Systems
 - Radiation Monitoring Systems
 - HMIs

Area Segregation

- Controlled
- Supervised

Controlled >> Supervised


Figure A1-1 Unit 1 Facility Layout

V.C. Summer NPP (US) Unit 1

https://www.nrc.gov/docs/ML1104/ML110410260.pdf

http://www.pilgrimpower.com/about-us/photo-gallery.html

https://public-blog.nrc-gateway.gov/2011/07/26/access-authorization-regulations-lead-to-arrest/

Mirion – WRM2

https://www.mirion.com/products/wrm2-wireless-remote-monitoring-system/

PRODUCT DESCRIPTION

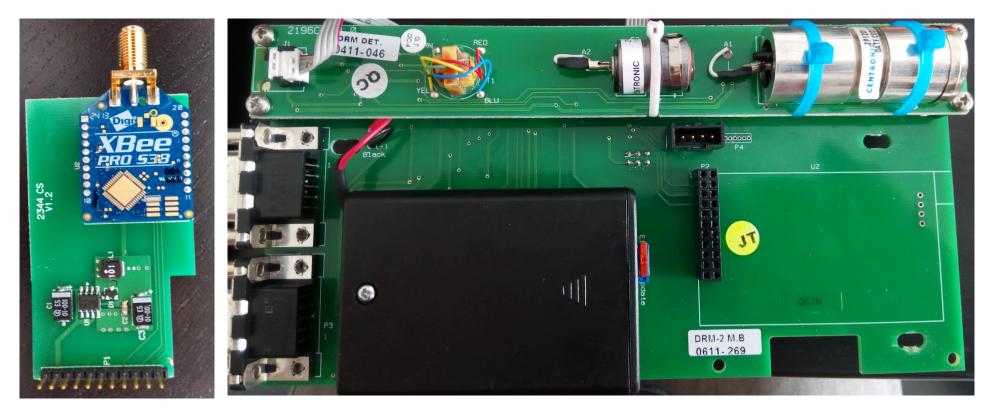
The WRM2 System provides a means to monitor and supervise a population of various radiation monitors spread out over a large area. It wirelessly links devices equipped with WRM2 transmitters and can display their statuses and measurements on a computer comfortably outside the area where the radiation measurement is taking place.

ABPM 203/4M

https://www.mirion.com/products/particulate-monitors-2/

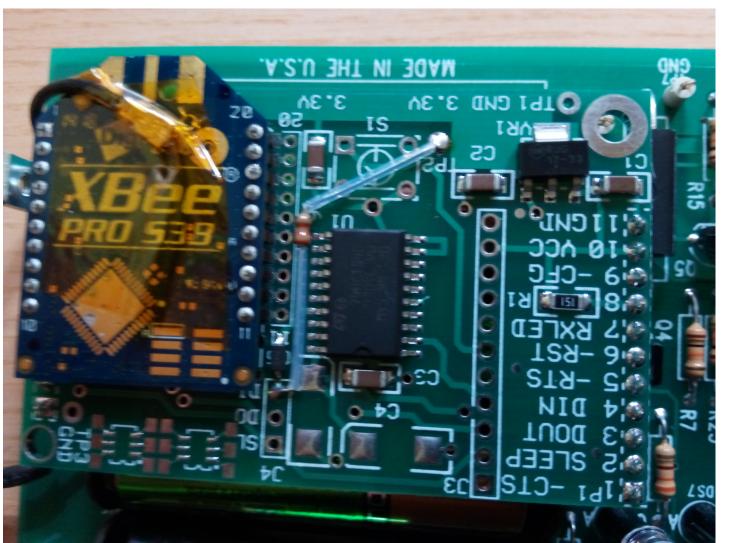
BASE TRANSCEIVE DRM-1 DRM-2E MGP MEP NGP MGP 0.0 1 ---Dattory MGP **Base Transceiver** DRM-1 (GM) DRM-1D (Csl) **DRM-2(D) Remote Display Unit** DRM-2(E)

WRM3))


External Transceiver

RAMSYS TX

DRM-2



Base Transceiver



IPAM-Tx

Digi Xbee-PRO XSC

"Networks are defined with a unique network identifier. For modules to communicate they must be configured with the same network identifier. The ID parameter allows multiple networks to co-exist on the same physical channel"

https://www.digi.com/resources/documentation/digidocs/pdfs/90002173.pdf

OEM Range: 0x8000 – 0xFFFF Read-only

- 1		• •	•				
	ID	0x27 (39d)	Module VID	User set table: 0x10 - 0x7FFF Read-only: 0x8000 - 0xFFFF	Networking	2	-

OEM networks are affected.

XBee-PRO XSC Addressing

Each RF packet contains addressing information that is used to filter incoming RF data. Receiving modules inspect the Hopping Channel (HP parameter), Vendor Identification Number (ID parameter) and Destination Address (DT parameter) contained in each RF packet. Data that does not pass through all three network security layers is discarded.

Hopping Channel Parameter Values: VID (Vendor Identification Number) HP = 0 to 6Parameter Values: ID = 0 to 0x7FFF **Desination Address** (user settable) Parameter Values: 0x8000 to 0xFFFF DT = 0 to 0xFFFF(factory-set, read-only) RF Data Modem IDs Addresses RF Data passes through Channels Match Match to DIO Buffer from antenna Match Non-matching Non-matching Addresses Non-matching IDs Channels

Filtration layers contained in the RF packet header

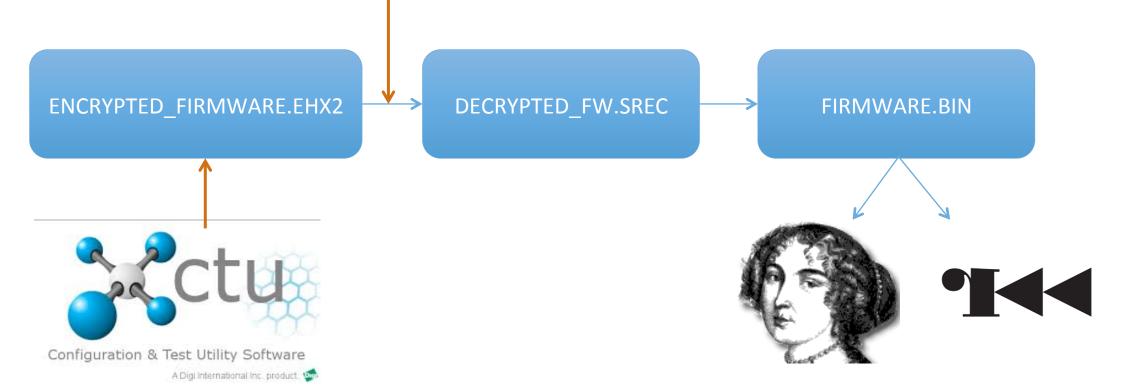
Page 129 https://cdn.sparkfun.com/datasheets/Wireless/Zigbee/90002173_N.pdf

Goals

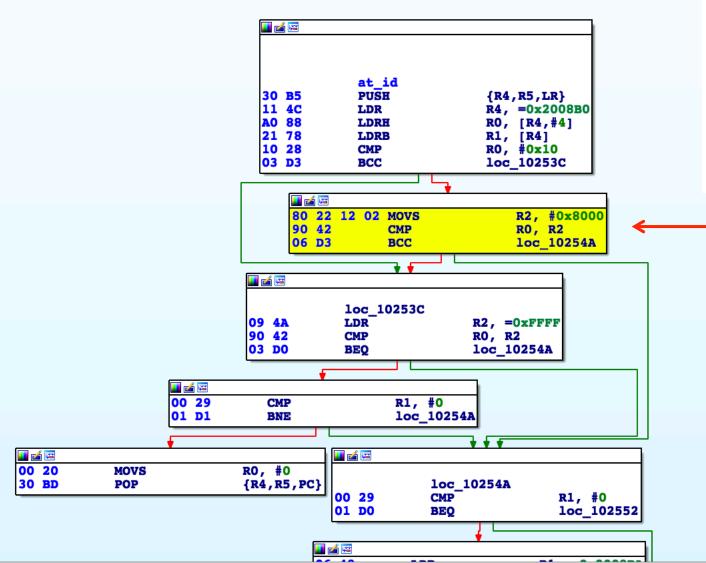
Access to arbitrary Digi XSC Networks XSC/WRM2 Analysis

Approach

- 1. Firmware
- 2. Hardware
- 3. Radio



FIRMWARE


key = "B7E648AE72434579B7F4D482587075D2B7E648AE72434579".decode('hex')

iv = "B7E648AE72434579".decode('hex')

des3 = DES3.new(key,DES3.MODE_CBC,iv)

ID (Modem VID) Command

Command Summary	Description			
AT Command: ATID	<networking> Set/Read the "Vendor</networking>			
Binary Command: 0x27 (39 decimal)	Identification Number". Only modems			
Parameter Range (user-set table) 0x10 - 0x7FFFF (Factory-set and read-only) 0x8000 - 0xFFFF	with matching IDs can communicate with each other. Modules with non- matching VIDs will not receive unintended data transmission.			
Number of bytes returned: 2	transmission.			

Unlocking OEM Range

-> Patch + Fix 1-byte Checksum +Encrypt

16592	2 03191402	00000000	0103070F	1F000000								
16603	8 11040802	04018200	41002000	15000000					Ç	ļ	١	
1662 <i>-</i>	4 2EFFFF	FFFFFFF	FFFFFFF	FFFFFFF		v v	٣	•	~ ~	v ,	• •	۷
16640	FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF	۷	• •	٣	• •	• •	• •	• •	v
1665	6 FFFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF	v	vv	٣	v .	~ ~	v .	~ ~	۷
16677	2 FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF	۷	v v	٣	•	~ ~	• •	~ ~	v
16683	B FFFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF	v	• •	٣	•	~ ~	· ·	• •	۷

.

· · · · · ·

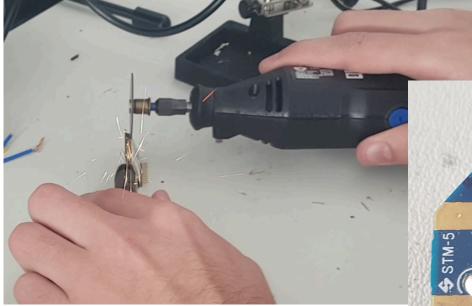
v v v v v v

v v v

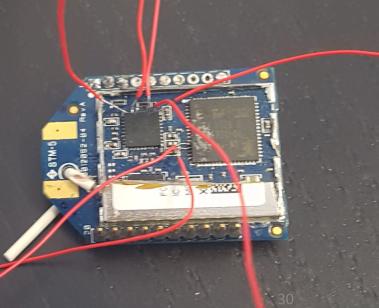
Hopping Sequences

ROM:00105010 ; unsigned	int8 patterns[196]
ROM:00105010 patterns	DCB 2, 0x13, 3, 0x12, 0x16, 5, 0x11, 0x10, 9, 0xF, 0xA, 0x17, 0xC, 7, 0xE, 8, 0x14, 0, 6, 0xD, 0xB, 0x15, 1, 0x18, 4; 0
ROM:00105010	; DATA XREF: hopping_pattern+18 [°] 0
ROM:00105010	; ROM:off_102B80 ¹ 0
ROM:00105010	DCB 0x19, 0x1A, 0xC, 5, 3, 0xF, 7, 4, 1, 0x10, 0x17, 0x15, 6, 0x13, 0xD, 0xC, 0xE, 9, 0x12, 0x11, 0x16, 0xA, 0xB, 0, 2; 25
ROM:00105010	DCB 8, 0x18, 0x14, 0x19, 0x1A, 0xC, 0, 0x18, 0x11, 0x14, 0xC, 7, 4, 0xE, 0xD, 8, 0x12, 0xB, 0x16, 0x13, 2, 9, 0x10, 0x17, 6; 50
ROM:00105010	DCB 0xF, 0xA, 1, 0x15, 3, 5, 0x19, 0x1A, 0xC, 0xC, 4, 0xB, 0x17, 0x12, 0x11, 2, 8, 0x18, 3, 6, 0x13, 7, 0x10, 0x14, 5; 75
ROM:00105010	DCB 0, 0x15, 0xE, 0x16, 0xA, 0xF, 0xD, 9, 1, 0x19, 0x1A, 0xC, 0x13, 4, 0xA, 0, 1, 0x18, 0x11, 8, 0x12, 2, 5, 0x10, 0x16; 100
ROM:00105010	DCB 0xF, 0xE, 9, 6, 0x17, 3, 0xB, 0xD, 0xC, 0x14, 0x15, 7, 0x19, 0x1A, 0xC, 4, 0xE, 0xF, 0xD, 0x18, 0xB, 0x11, 0xC, 3, 7; 125
ROM:00105010	DCB 0x12, 0x15, 0x17, 0x16, 1, 0x14, 5, 2, 9, 0xA, 0x10, 0x13, 0, 6, 8, 0x19, 0x1A, 0xC, 8, 0x11, 0xD, 0xA, 2, 0, 0x14; 150
ROM:00105010	DCB 0xB, 6, 0x17, 9, 1, 7, 0x13, 0x12, 0xF, 0xE, 0x16, 0xC, 0x10, 0x15, 5, 4, 0x18, 3, 0x19, 0x1A, 0xC; 175
	$\mathbf{\uparrow}$

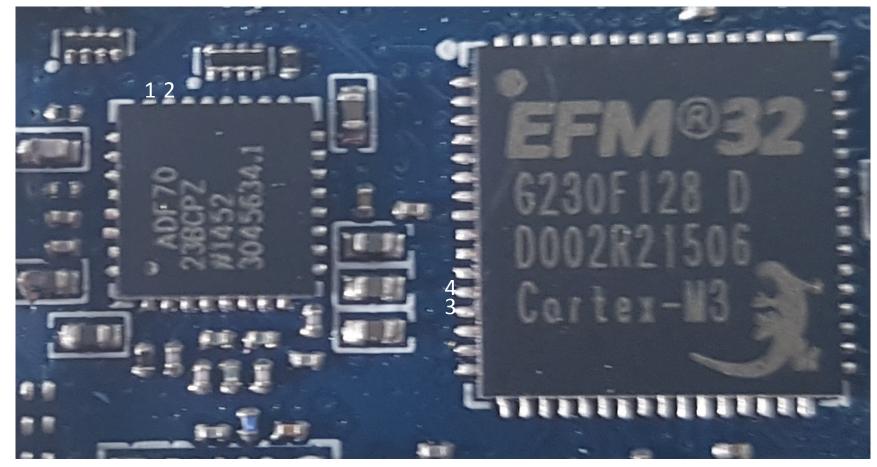
902-928MHz (located in the 900MHz ISM Band)
Frequency Hopping
Point-to-Point, Peer-to-Peer, Point-to-Multipoint
7 hop sequences share 25 frequencies

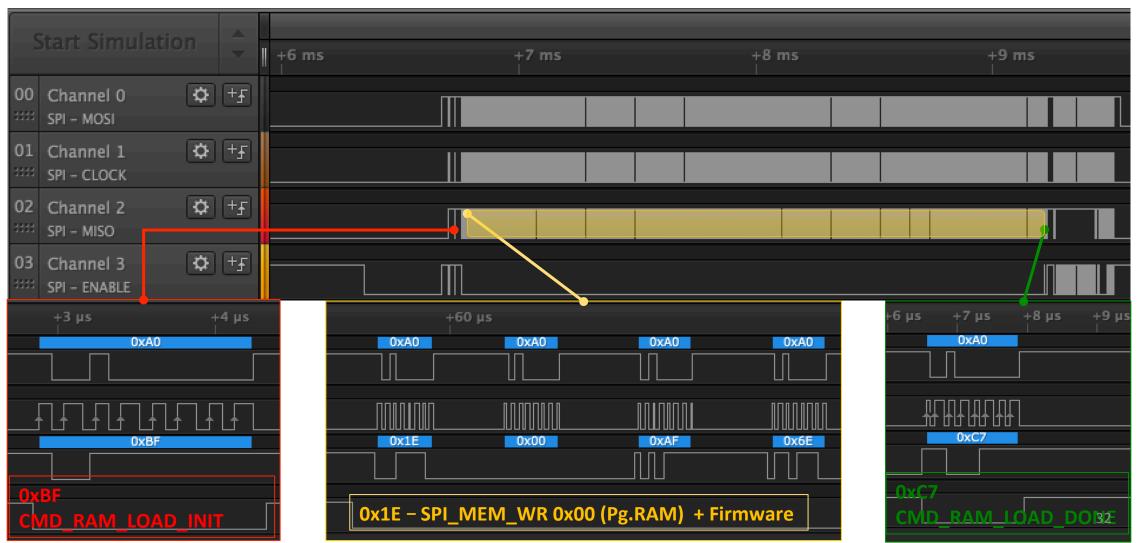


1. Access to arbitrary Digi XSC Networks 🗸

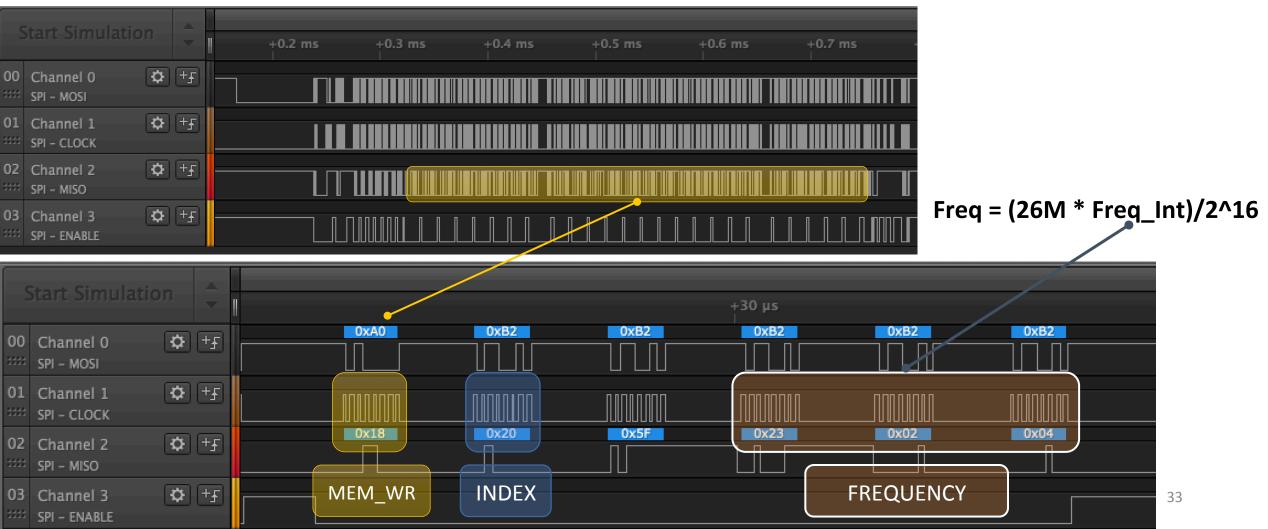

2. XSC/WRM2 Analysis

HARDWARE




1

ADF7023 http://www.analog.com/media/en/technical-documentation/data-sheets/ADF7023.pdf

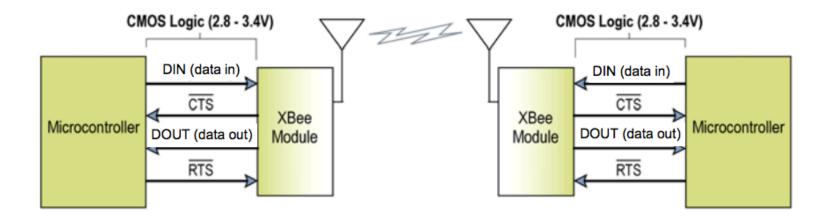


Reset

Reset

Mirion always uses the first Hopping Pattern (0)

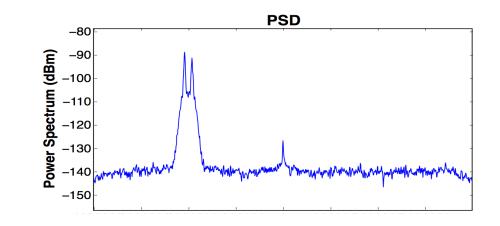
Center Frequencies – Pattern 0 – 25 channels – Digi XSC-PRO					
0. 910518532,1	D. 914418829,6				
1.910818463,4	E. 914718761				
2.911118791,5	F. 915018692,3				
3. 911418722,8	10. 915318623,6				
4.911718654,2	11.915618555				
5. 912018585,5	12.915918883				
6. 912318516,8	13.916218814,4				
7.912618844,9	14. 916518745,7				
8. 912918776,2	15.916818677				
9. 913218707,6	16. 917118608,4				
A. 913518638,9	17.917418936,4				
B. 913818570,2	18.917719264,4				
C. 914118898,3					

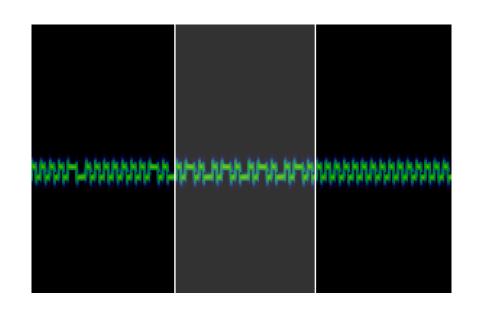

Pattern 0: 2, 0x13, 3, 0x12, 0x16, 5, 0x11, 0x10, 9, 0xF, 0xA, 0x17, 0xC, 7, 0xE, 8, 0x14, 0, 6, 0xD, 0xB, 0x15, 1, 0x18, 4

2.1.1. UART-Interfaced Data Flow

Devices that have a UART interface can connect directly through the pins of the XBee module as shown in the figure below.

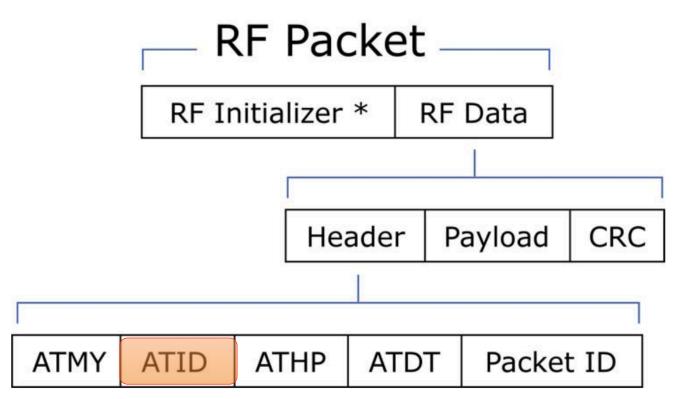
Figure 2-01. System Data Flow Diagram in a UART-interfaced environment (Low-asserted signals distinguished with horizontal line over signal name.)

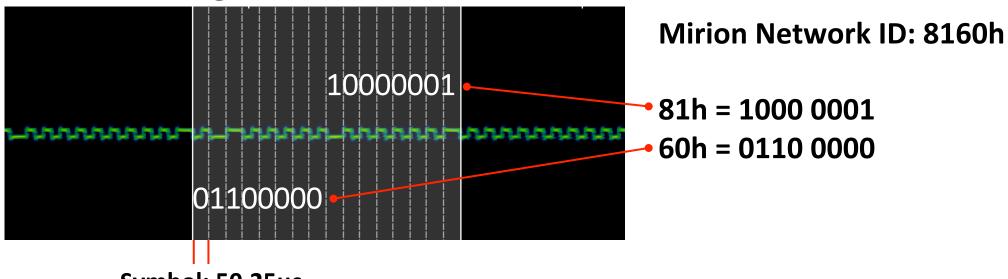



WRM2 Example: 1234567800000000001030YY

RADIO

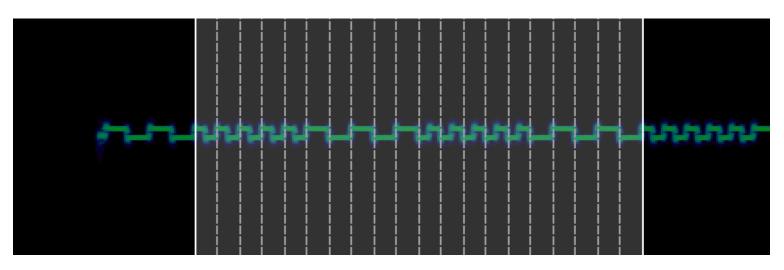
- Modulation
 - 2GFSK
- Encoding Scheme
 - Biphase-S
- FHSS (Slow)
 - Channels
 - Center Frequency
 - Mark
 - Space
 - Width
 - Dwell time
 - Blanking time




RF Packet

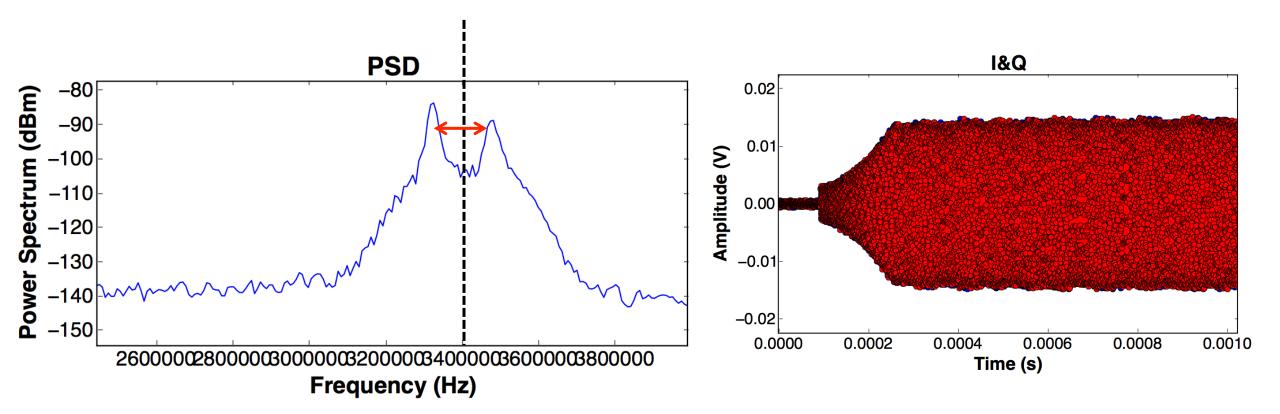
The RF packet is the sequence of data used for communicating information between Digi Radios. An RF Packet consists of an RF Initializer and RF Data.

Data Encoding


Symbol: 50.25µs

Biphase - Space

- The signal level changes at the start of every bit time.
- The signal level changes in the middle of a bit time if the bit is 0


Channels

- All channels have the same 'preamble'
- Each channel has a different 'Sync Word'

[+] 16000000 samples loaded

IOActive RF Utils - Plugin BlackHat'17 FHSS/2GFSK 0.1 -{Ruben Santamarta}-

- 1. Sampling Rate: [8000000 Hz]
- 2. Block Size: [4000]
- 3. Freq Resolution: [15625.000 Hz]
- 4. Low Freq: [91000000.000 Hz]
- 5. High Freq: [918000000.000 Hz]

[+] Detecting burst

[*] Found potential signal => Block: 436000 Noise: 0.0001(v) Signal: 0.0125(v)

[+] Detecting Channels...

Channel	[0] =>	Center Frequency:	915.0 Mhz	=== Offset: [438592 -> 763383] Time:	0.054500(s) to 0.095000(s) Spa	an: $0.04050(s) ===$
Channel	[1] =>	Center Frequency:	913.5 Mhz	=== Offset: [1236042 -> 1560903]	Time: 0.154500(s) to 0.195000(s)	Span: 0.04050(s) ===
Channel	[2] =>	Center Frequency:	917.4 Mhz	=== Offset: [2048946 -> 2373617]	Time: 0.256000(s) to 0.296500(s)	Span: 0.04050(s) ===
Channel	[3] =>	Center Frequency:	914.1 Mhz	=== Offset: [2843379 -> 3171922]	Time: 0.355000(s) to 0.396000(s)	Span: 0.04100(s) ===
Channel	[4] =>	Center Frequency:	912.6 Mhz	=== Offset: [3650629 -> 3975441]	Time: 0.456000(s) to 0.496500(s)	Span: 0.04050(s) ===
Channel	[5] =>	Center Frequency:	914.7 Mhz	=== Offset: [4451519 -> 4776345]	Time: 0.556000(s) to 0.597000(s)	Span: 0.04100(s) ===
Channel	[6] =>	Center Frequency:	912.9 Mhz	=== Offset: [5259009 -> 5583879]	Time: 0.657000(s) to 0.697500(s)	Span: 0.04050(s) ===
Channel	[7] =>	Center Frequency:	916.5 Mhz	=== Offset: [6054847 -> 6379668]	Time: 0.756500(s) to 0.797000(s)	Span: 0.04050(s) ===
Channel	[8] =>	Center Frequency:	910.5 Mhz	=== Offset: [6860663 -> 7185581]	Time: 0.857500(s) to 0.898000(s)	Span: 0.04050(s) ===
Channel	[9] =>	Center Frequency:	912.3 Mhz	=== Offset: [7663576 -> 7988433]	Time: 0.957500(s) to 0.998500(s)	Span: 0.04100(s) ===
Channel	[10] =>	Center Frequency:	914.4 Mhz	=== Offset: [8464460 -> 8789235]	Time: 1.058000(s) to 1.098500(s)	Span: 0.04050(s) ===
Channel	[11] =>	Center Frequency:	913.8 Mhz	=== Offset: [9273564 -> 9598462]	Time: 1.159000(s) to 1.199500(s)	Span: 0.04050(s) ===
Channel	[12] =>	Center Frequency:	916.7 Mhz	=== Offset: [10071130 -> 10395934]	Time: 1.258500(s) to 1.299000(s)	Span: 0.04050(s) ===
Channel	[13] =>	Center Frequency:	910.8 Mhz	=== Offset: [10880439 -> 11205313]	Time: 1.360000(s) to 1.400500(s)	Span: 0.04050(s) ===
Channel	[14] =>	Center Frequency:	917.7 Mhz	=== Offset: [11678376 -> 12002881]	Time: 1.459500(s) to 1.500000(s)	Span: 0.04050(s) ===
Channel	[15] =>	Center Frequency:	911.7 Mhz	=== Offset: [12486012 -> 12810807]	Time: 1.560500(s) to 1.601000(s)	Span: 0.04050(s) ===
Channel	[16] =>	Center Frequency:	911.1 Mhz	=== Offset: [13285129 -> 13609978]	Time: 1.660500(s) to 1.701000(s)	Span: 0.04050(s) ===
Channel	[17] =>	Center Frequency:	916.3 Mhz	=== Offset: [14087701 -> 14412515]	Time: 1.760500(s) to 1.801500(s)	Span: 0.04100(s) ===
Channel	[18] =>	Center Frequency:	911.4 Mhz	=== Offset: [14891781 -> 15216722]	Time: 1.861000(s) to 1.902000(s)	Span: 0.04100(s) ===
						42

1. Access to arbitrary Digi XSC Networks

2. XSC/WRM2 Analysis

ATTACK SCENARIOS

'Radioactive Leak' Attack

OSINT

Emergency Action Levels

Annex 1: Unit 1

V. C. Summer Nuclear Station

3.1 Emergency Action Level Matrix

ABNORMAL RAD RELEASE/RAD EFFLUENT EALS

Table 3-R-1: Recognition Category "R" Initiating Condition Matrix						
GENERAL EMERGENCY	SITE AREA EMERGENCY	ALERT	UNUSUAL EVENT			
RG1.1 Valid reading on any monitors that exceeds or is expected to exceed Table R-1 column "GE" for ≥15 min.	RS1.1 Valid reading on any radiation monitors that exceeds or is expected to exceed Table R-1 column "SAE" for ≥15 min. Op. Modes: All	RA1.1 Valid reading on any Gaseous monitors > Table R-1 column "Alert" for ≥15 min. (Note 2) Op. Modes: All	RU1.1 Valid reading on any gaseous monitors > Table R-1 column "UE" for ≥60 min. (Note 2) Op. Modes: All			
Op. Modes: All						
RG1.2 Dose assessment using actual meteorology indicates doses >1,000 mRem TEDE or 5,000 mRem thyroid CDE at or beyond the site boundary.	RS1.2 Dose assessment using actual meteorology indicates doses >100 mRem TEDE or 500 mRem thyroid CDE at or beyond the site boundary. Op. Modes: All	RA1.2 Valid reading on Liquid monitor RM-L9 > Table R-1 column "Alert" for ≥15 min. (Note 2) Op. Modes: All	RU1.2 Valid reading on Liquid monitor RM-L9 > Table R-1 column "UE" for ≥60 min. (Note 2) Op. Modes: All			

Virgil C. Summer Power Plant (US) Emergency Plan https://www.nrc.gov/docs/ML1104/ML110410260.pdf

[powernet] Question regarding number WRM Base Transceivers

Hinmark Winhappen Tue, 12 Apr 2016 12:54:53 -0700

Question from Columbia regarding utilities using Mirion (MGPI) Wireless Remote Monitoring equipment.

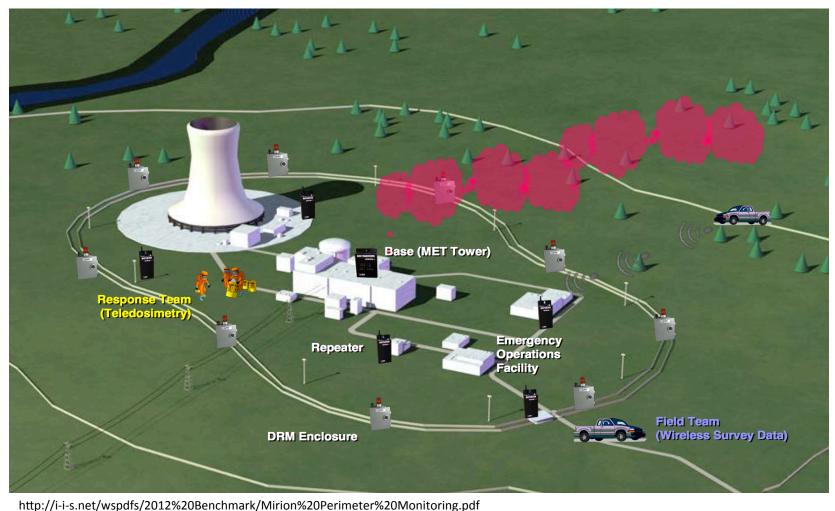
1) What number of WRM2 Base Transceiver (WR2-9001) Units do you have deployed out in the plant (outage and non-outage - if different)?

2) How many WRM2 Base Transceiver units vs. WRM2 Repeater units?

We are currently evaluating our system needs and have 5 WRM2 Base Transceivers in service with 2 stand-alone units on mobile carts.

Thank you in advance.

https://www.mail-archive.com/powernet@hpspowernet.org/msg00186.html



V.C. Summer NPP – Auxiliary Building Roof

'Sabotaging Health Physics/Emergency Response Teams' Attack

- Failed Evacuation
- Concealed Persistent Attack

48

Responsible Disclosure

×	Ludlum	June, 2014
*	Digi	May, 2017
×	Mirion	May, 2017

Thank you!